Normal Approximation, Fair Allocations, Interacting Brownian Particles, and Applications
正态近似、公平分配、相互作用的布朗粒子和应用
基本信息
- 批准号:0707054
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is proposed to study several problems in Probability. One class of problems concerns central limit theorems for complex objects like nearest neighbor statistics and linear statistics of eigenvalues of large dimensional random matrices. The PI has invented a new method that works by exploiting a hitherto unknown connection between normal approximation and concentration of measure, two different branches of probability theory. A second class of problems involves fair allocations of Lebesgue measure to discrete point processes in Euclidean spaces and manifolds. Finally, a third line of investigation pursues a method of connecting the analysis of interacting Brownian particles with the geometry of convex polytopes.The key focus of the project is on Central Limit Theorems. CLT's, as they are popularly known, are one of the founding pillars of Probability Theory and arguably its most widely used tool in the applied sciences, finding everyday applications in fields ranging from Statistics to Bio-informatics, Computer Science to Economics. Although much is known, there are still many unsolved questions. In fact, the PI's investigation into the theory of Central Limit Theorems was initiated by an open question raised by Peter Bickel, an eminent Berkeley scientist working in the area of high dimensional data analysis. The PI now has a new technique for proving CLT's that has not only solved the open question, but has yielded and promises to yield much more.
建议研究概率中的几个问题。一类问题涉及复杂对象的中心极限定理,例如最近邻统计和大维随机矩阵特征值的线性统计。 PI 发明了一种新方法,其工作原理是利用正态近似和测量集中(概率论的两个不同分支)之间迄今为止未知的联系。第二类问题涉及将勒贝格测度公平分配到欧几里得空间和流形中的离散点过程。最后,第三条研究路线寻求一种将相互作用的布朗粒子分析与凸多面体几何联系起来的方法。该项目的重点是中心极限定理。众所周知,CLT 是概率论的奠基支柱之一,并且可以说是应用科学中使用最广泛的工具,在从统计学到生物信息学、计算机科学到经济学等领域都有日常应用。尽管已知的很多,但仍有许多未解决的问题。事实上,PI 对中心极限定理理论的研究是由 Peter Bickel 提出的一个开放性问题发起的,Peter Bickel 是一位在高维数据分析领域工作的伯克利杰出科学家。 PI 现在拥有一种证明 CLT 的新技术,该技术不仅解决了悬而未决的问题,而且已经产生并有望产生更多成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sourav Chatterjee其他文献
Spectral gap of nonreversible Markov chains
不可逆马尔可夫链的谱隙
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sourav Chatterjee - 通讯作者:
Sourav Chatterjee
MetQuan - A Comprehensive Toolkit for Variational Quantum Sensing and Metrology
MetQuan - 用于变分量子传感和计量的综合工具包
- DOI:
10.1109/comsnets59351.2024.10427198 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kunal Sinha;Rajas Dalvi;M. G. Chandra;Sourav Chatterjee - 通讯作者:
Sourav Chatterjee
Retraction Note: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
- DOI:
10.1007/s10495-024-02007-7 - 发表时间:
2024-07-23 - 期刊:
- 影响因子:8.100
- 作者:
Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay - 通讯作者:
Santu Bandyopadhyay
Liouville Theory: An Introduction to Rigorous Approaches
刘维尔理论:严格方法简介
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sourav Chatterjee;Edward Witten - 通讯作者:
Edward Witten
RETRACTED ARTICLE: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
- DOI:
10.1007/s10495-011-0695-9 - 发表时间:
2012-01-18 - 期刊:
- 影响因子:8.100
- 作者:
Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay - 通讯作者:
Santu Bandyopadhyay
Sourav Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sourav Chatterjee', 18)}}的其他基金
Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
- 批准号:
2153654 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
- 批准号:
2113242 - 财政年份:2021
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Two-Dimensional KPZ Evolution, Fluctuation Lower Bounds, and Ultrametricity
二维 KPZ 演化、波动下界和超计量性
- 批准号:
1855484 - 财政年份:2019
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity
格规理论、重要性采样和量子唯一遍历性
- 批准号:
1608249 - 财政年份:2016
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
- 批准号:
1441513 - 财政年份:2013
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
- 批准号:
1309618 - 财政年份:2013
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Disordered systems, dense graphs, normal approximation and applications
无序系统、稠密图、正态逼近及应用
- 批准号:
1005312 - 财政年份:2010
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
相似海外基金
High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
- 批准号:
DP240100769 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Discovery Projects
Approximation theory of structured neural networks
结构化神经网络的逼近理论
- 批准号:
DP240101919 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Discovery Projects
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
- 批准号:
2400040 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
- 批准号:
2247123 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Development of a novel best approximation theory with applications
开发一种新颖的最佳逼近理论及其应用
- 批准号:
DP230102079 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Discovery Projects
A Lebesgue Integral based Approximation for Language Modelling
基于勒贝格积分的语言建模近似
- 批准号:
EP/X019063/1 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Research Grant














{{item.name}}会员




