Concentration of measure, large deviations, normal approximation and applications

测量集中、大偏差、正态近似及应用

基本信息

  • 批准号:
    1441513
  • 负责人:
  • 金额:
    $ 30.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

It is proposed to study several problems in probability. One class of problems concerns the phenomenon of localization under the occurrence of a rare event, with applications to problems ranging from nonlinear dispersive equations to random graphs. A second class of problems involves cutting-edge issues in concentration of measure, particularly related to a topic called "superconcentration". The PI is proposing to writing a book-length monograph on these topics, compiling a bunch of results that he proved in previous work together with some new results and ideas. Finally, a third class of problems centers around a continuation of the proposer's earlier work of normal approximation in modern problems.Concentration of measure and large deviations are basic mathematical tools that are frequently used in statistics, computer science, engineering, physics, and many other fields. In this proposal, the PI has outlined a plan that may shed light on some fundamental issues in large deviations and concentration of measure, with applications to open questions in partial differential equations, random graphs and networks, and several other topics. The purpose of the proposed book-length monograph is to elucidate the ideas to a broad audience.
提出研究概率论中的几个问题。一类问题涉及罕见事件发生时的局部化现象,其应用范围从非线性色散方程到随机图。第二类问题涉及测量集中的前沿问题,特别是与“超集中”相关的话题。PI正提议就这些主题撰写一本书长的专著,将他在以前的工作中证明的一堆结果与一些新的结果和想法结合起来。最后,第三类问题围绕着提出者在现代问题中关于正态近似的早期工作的延续。度量集中和大偏差是基本的数学工具,经常用于统计学、计算机科学、工程、物理和许多其他领域。在这个提案中,PI概述了一个计划,该计划可能会揭示大偏差和集中测量中的一些基本问题,并应用于偏微分方程,随机图和网络以及其他几个主题中的开放问题。拟写这本书长的专著的目的是向广大读者阐明这些思想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sourav Chatterjee其他文献

Spectral gap of nonreversible Markov chains
不可逆马尔可夫链的谱隙
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Chatterjee
  • 通讯作者:
    Sourav Chatterjee
MetQuan - A Comprehensive Toolkit for Variational Quantum Sensing and Metrology
MetQuan - 用于变分量子传感和计量的综合工具包
Retraction Note: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
  • DOI:
    10.1007/s10495-024-02007-7
  • 发表时间:
    2024-07-23
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay
  • 通讯作者:
    Santu Bandyopadhyay
Liouville Theory: An Introduction to Rigorous Approaches
刘维尔理论:严格方法简介
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Chatterjee;Edward Witten
  • 通讯作者:
    Edward Witten
RETRACTED ARTICLE: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
  • DOI:
    10.1007/s10495-011-0695-9
  • 发表时间:
    2012-01-18
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay
  • 通讯作者:
    Santu Bandyopadhyay

Sourav Chatterjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sourav Chatterjee', 18)}}的其他基金

Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
  • 批准号:
    2153654
  • 财政年份:
    2022
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Standard Grant
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
  • 批准号:
    2113242
  • 财政年份:
    2021
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Standard Grant
Two-Dimensional KPZ Evolution, Fluctuation Lower Bounds, and Ultrametricity
二维 KPZ 演化、波动下界和超计量性
  • 批准号:
    1855484
  • 财政年份:
    2019
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Continuing Grant
Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity
格规理论、重要性采样和量子唯一遍历性
  • 批准号:
    1608249
  • 财政年份:
    2016
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
  • 批准号:
    1309618
  • 财政年份:
    2013
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Continuing Grant
Random Structures and Limit Objects
随机结构和限制对象
  • 批准号:
    1237838
  • 财政年份:
    2012
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Standard Grant
Disordered systems, dense graphs, normal approximation and applications
无序系统、稠密图、正态逼近及应用
  • 批准号:
    1005312
  • 财政年份:
    2010
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Continuing Grant
Normal Approximation, Fair Allocations, Interacting Brownian Particles, and Applications
正态近似、公平分配、相互作用的布朗粒子和应用
  • 批准号:
    0707054
  • 财政年份:
    2007
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Standard Grant

相似国自然基金

有理函数动力系统的一些研究
  • 批准号:
    10926028
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
Vector engineering for non-viral delivery of large genomic DNA to the RPE
用于将大基因组 DNA 非病毒传递至 RPE 的载体工程
  • 批准号:
    10667049
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
  • 批准号:
    10603708
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
The Subdural Hematoma Outcomes in a Population (SD HOP) Study
硬膜下血肿人群 (SD HOP) 研究结果
  • 批准号:
    10591861
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
Using Large-Scale Network Data to Measure Social Returns and Improve Targeting of Crime-Reduction Interventions
使用大规模网络数据衡量社会回报并提高减少犯罪干预措施的针对性
  • 批准号:
    2242453
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
    Standard Grant
Measuring and Mapping National Pediatric Acute Care Outcomes
衡量和绘制全国儿科急性护理成果
  • 批准号:
    10714729
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
Metabolic Obesity Phenotypes and Obesity-related Cancer Survival
代谢性肥胖表型和肥胖相关的癌症生存
  • 批准号:
    10752062
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
Determining the factors that impact single stranded DNA mutagenesis
确定影响单链 DNA 突变的因素
  • 批准号:
    10713599
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
Generation of a Large Animal Model of Sialidosis to Enable Future Translation of Novel Therapeutics
生成唾液酸贮积症的大型动物模型,以实现新疗法的未来转化
  • 批准号:
    10578286
  • 财政年份:
    2023
  • 资助金额:
    $ 30.98万
  • 项目类别:
Systematic liquid biopsy to monitor residual disease and treatment efficacy in gastrointestinal cancer patients
系统液体活检监测胃肠道癌症患者的残留病灶和治疗效果
  • 批准号:
    10697368
  • 财政年份:
    2022
  • 资助金额:
    $ 30.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了