Random Structures and Limit Objects

随机结构和限制对象

基本信息

  • 批准号:
    1237838
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

The conference "Random Structures and Limit Objects", to be held on September 15-16, 2012 at the Courant Institute of Mathematical Sciences in New York University, will use the occasion of the 60th birthday of David Aldous to bring together a diverse group of eminent experts and new researchers, with the aim of discussing and making progress on some of the most pressing research questions in probability theory and related areas. Special emphasis will be laid on fields influenced by David Aldous's works, such as exchangeability and graph limits, mixing time of Markov chains and their deep connections with critical phenomena in statistical physics and computer science, extreme value theory and Poisson approximation, random trees and critical random graphs, stochastic coagulation and fragmentation models, phylogenetics and biological models of evolution and the notion of local weak convergence and combinatorial optimization. The conference will feature eight talks over a span of two days, with additional short talks by junior researchers and graduate students. Specialized mathematical meetings like this are important since they give people an opportunity to young researchers to exchange ideas and try out new theories and interact with some of the pre-eminent thinkers in the field. This conference will be an open meeting and will be advertised in the Bulletin of the Institute of Mathematical Statistics, the Notices of the American Mathematical Society, on the Web, and through a number of electronic mailing lists. A conference website will also be maintained. The slides of the talks will be made available at the conference website. If possible, we will also collect some of the core questions and ideas that arise in the conference and publish this in survey form in an open access probability journal such as Probability Surveys.
将于2012年9月15日至16日在纽约大学Courant数学科学研究所举行的“随机结构和极限物体”会议将利用David Aldous 60岁生日的机会,将不同的知名专家和新研究人员聚集在一起,旨在讨论概率论和相关领域一些最紧迫的研究问题并取得进展。重点将放在受David Aldous影响的领域,如可交换性和图极限,马尔可夫链的混合时间及其与统计物理和计算机科学中的关键现象的深刻联系,极值理论和泊松近似,随机树和临界随机图,随机凝固和碎片模型,进化的系统发育和生物学模型以及局部弱收敛和组合优化的概念。会议将在两天内举行8场演讲,另外还有初级研究人员和研究生的简短演讲。像这样的专门数学会议很重要,因为它们给年轻的研究人员提供了一个交流思想、尝试新理论、与该领域一些杰出思想家互动的机会。本次会议将是一次公开会议,并将在数理统计研究所公报、美国数学学会公告、网络和一些电子邮件列表上刊登广告。还将维持一个会议网站。会议的幻灯片将在会议网站上提供。如果可能的话,我们还将收集会议中出现的一些核心问题和观点,并以调查的形式发表在开放获取的概率期刊(如probability Surveys)上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sourav Chatterjee其他文献

Spectral gap of nonreversible Markov chains
不可逆马尔可夫链的谱隙
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Chatterjee
  • 通讯作者:
    Sourav Chatterjee
MetQuan - A Comprehensive Toolkit for Variational Quantum Sensing and Metrology
MetQuan - 用于变分量子传感和计量的综合工具包
Retraction Note: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
  • DOI:
    10.1007/s10495-024-02007-7
  • 发表时间:
    2024-07-23
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay
  • 通讯作者:
    Santu Bandyopadhyay
Liouville Theory: An Introduction to Rigorous Approaches
刘维尔理论:严格方法简介
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Chatterjee;Edward Witten
  • 通讯作者:
    Edward Witten
RETRACTED ARTICLE: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
  • DOI:
    10.1007/s10495-011-0695-9
  • 发表时间:
    2012-01-18
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay
  • 通讯作者:
    Santu Bandyopadhyay

Sourav Chatterjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sourav Chatterjee', 18)}}的其他基金

Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
  • 批准号:
    2153654
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Standard Grant
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
  • 批准号:
    2113242
  • 财政年份:
    2021
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Standard Grant
Two-Dimensional KPZ Evolution, Fluctuation Lower Bounds, and Ultrametricity
二维 KPZ 演化、波动下界和超计量性
  • 批准号:
    1855484
  • 财政年份:
    2019
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Continuing Grant
Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity
格规理论、重要性采样和量子唯一遍历性
  • 批准号:
    1608249
  • 财政年份:
    2016
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
  • 批准号:
    1441513
  • 财政年份:
    2013
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
  • 批准号:
    1309618
  • 财政年份:
    2013
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Continuing Grant
Disordered systems, dense graphs, normal approximation and applications
无序系统、稠密图、正态逼近及应用
  • 批准号:
    1005312
  • 财政年份:
    2010
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Continuing Grant
Normal Approximation, Fair Allocations, Interacting Brownian Particles, and Applications
正态近似、公平分配、相互作用的布朗粒子和应用
  • 批准号:
    0707054
  • 财政年份:
    2007
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Standard Grant

相似海外基金

LEAPS-MPS: Analytic Approaches to Limit Theorems and Random Structures
LEAPS-MPS:极限定理和随机结构的分析方法
  • 批准号:
    2137623
  • 财政年份:
    2021
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Standard Grant
CAREER: Pushing the Performance Limit of Composite Structures: Integrated Modeling of Manufacturing Processes and Materials
职业:突破复合结构的性能极限:制造工艺和材料的集成建模
  • 批准号:
    1944633
  • 财政年份:
    2020
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Standard Grant
CAREER: Pushing the Performance Limit of Composite Structures: Integrated Modeling of Manufacturing Processes and Materials
职业:突破复合结构的性能极限:制造工艺和材料的集成建模
  • 批准号:
    2105448
  • 财政年份:
    2020
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Standard Grant
Safe limit snow loads of small and medium-sized spatial structures subjected to earthquake motions and securing function for evacuation facilities during snow season
地震作用下中小型空间结构雪荷载的安全限制及雪季疏散设施的固定功能
  • 批准号:
    18K04427
  • 财政年份:
    2018
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification of ultimate limit states of old large span steel structures for aseismic retrofit considering business continuity.
考虑业务连续性的旧大跨钢结构抗震改造极限状态的明确
  • 批准号:
    18H01583
  • 财政年份:
    2018
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Enhancing fatigue strength of welded joints made of steels for bridge high performance structures by considering its beneficial fatigue limit
考虑其有益疲劳极限,提高桥梁高性能结构钢焊接接头的疲劳强度
  • 批准号:
    17K06530
  • 财政年份:
    2017
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimisation of Structures Excited by Wind under Consideration of Stochastic Actions and Various Limit States
考虑随机作用和各种极限状态的风激结构优化
  • 批准号:
    329120866
  • 财政年份:
    2017
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Research Grants
Numerical Simulation of Limit Load Behaviour for Welded Aluminium Structures Based on Materials Knowledge
基于材料知识的焊接铝结构极限载荷行为数值模拟
  • 批准号:
    290068716
  • 财政年份:
    2016
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Research Grants
Long range dependence: The effect of infinite ergodic theoretical structures on limit theorems in probability
长程依赖性:无限遍历理论结构对概率极限定理的影响
  • 批准号:
    1506783
  • 财政年份:
    2015
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Continuing Grant
Limit laws arising from certain finite structures
由某些有限结构产生的极限定律
  • 批准号:
    465155-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.66万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了