Two-Dimensional KPZ Evolution, Fluctuation Lower Bounds, and Ultrametricity

二维 KPZ 演化、波动下界和超计量性

基本信息

  • 批准号:
    1855484
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This project concerns several problems in probability theory. One class of problems addresses the evolution of random surfaces according to the KPZ equation, named after its discoverers, Kardar, Parisi, and Zhang. Random surfaces have attracted a lot of recent attention in probability theory, and there are many unanswered questions. This project will aim to answer some of these questions. A second class of problems involves extending and developing a theory of lower bounds on fluctuations of random variables. Understanding fluctuations of random variables is one of the basic goals of probability theory, but there are many important problems where existing methods do not give desirable results. The PI aims to make some progress in this area by providing a new set of tools. Finally, a third class of problems centers around understanding ultrametric spaces that arise in the study of models from statistical mechanics. The strategy of working on problems in varied areas of probability theory at the same time has the potential of uncovering new connections.The problems concerning the KPZ evolution are mainly about producing a solution of the equation in 2D. This would be an important breakthrough because the task of constructing any solution for the 2D KPZ equation has remained intractable so far. The results about fluctuation lower bounds would give the optimal conditions under which the current best lower bounds can be proved for planar growth models. Previously, such lower bounds required restrictive conditions. The proposed method of solution is based on a novel coupling, which may be of independent interest. The research on ultrametricity will shed light on the hierarchical organization of states in spin glass models, especially for models with full replica symmetry breaking. It will also introduce a novel connection between the study of these models and tools from graph theory such as Szemeredi's regularity lemma.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及概率论中的几个问题。一类问题是根据KPZ方程解决随机曲面的演化,以其发现者Kardar,Parisi和Zhang命名。随机曲面在概率论中引起了广泛的关注,但仍有许多问题没有得到解答。该项目旨在回答其中的一些问题。第二类问题涉及扩展和发展理论的下限波动的随机变量。了解随机变量的波动是概率论的基本目标之一,但有许多重要的问题,现有的方法没有得到理想的结果。PI旨在通过提供一套新的工具在这一领域取得一些进展。最后,第三类问题集中在理解超度量空间,这些空间是在研究统计力学模型时出现的。同时处理概率论不同领域问题的策略有可能发现新的联系。关于KPZ演化的问题主要是关于在2D中产生方程的解。这将是一个重要的突破,因为到目前为止,构造2D KPZ方程的任何解的任务仍然是棘手的。关于涨落下界的结果给出了平面增长模型当前最佳下界的最优证明条件。 以前,这种下限需要限制性条件。所提出的解决方案的方法是基于一种新的耦合,这可能是独立的利益。对超度规性的研究将有助于理解自旋玻璃模型中态的等级组织,特别是对于完全复制对称性破缺的模型。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence of Deterministic Growth Models
确定性增长模型的收敛
Average Gromov hyperbolicity and the Parisi ansatz
平均格罗莫夫双曲性和帕里西 ansatz
  • DOI:
    10.1016/j.aim.2020.107417
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chatterjee, Sourav;Sloman, Leila
  • 通讯作者:
    Sloman, Leila
A Deterministic Theory of Low Rank Matrix Completion
Constructing a solution of the $(2+1)$-dimensional KPZ equation
构造 $(2 1)$ 维 KPZ 方程的解
  • DOI:
    10.1214/19-aop1382
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Chatterjee, Sourav;Dunlap, Alexander
  • 通讯作者:
    Dunlap, Alexander
A SIMPLE MEASURE OF CONDITIONAL DEPENDENCE
  • DOI:
    10.1214/21-aos2073
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Azadkia, Mona;Chatterjee, Sourav
  • 通讯作者:
    Chatterjee, Sourav
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sourav Chatterjee其他文献

Spectral gap of nonreversible Markov chains
不可逆马尔可夫链的谱隙
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Chatterjee
  • 通讯作者:
    Sourav Chatterjee
MetQuan - A Comprehensive Toolkit for Variational Quantum Sensing and Metrology
MetQuan - 用于变分量子传感和计量的综合工具包
Retraction Note: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
  • DOI:
    10.1007/s10495-024-02007-7
  • 发表时间:
    2024-07-23
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay
  • 通讯作者:
    Santu Bandyopadhyay
Liouville Theory: An Introduction to Rigorous Approaches
刘维尔理论:严格方法简介
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Chatterjee;Edward Witten
  • 通讯作者:
    Edward Witten
RETRACTED ARTICLE: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
  • DOI:
    10.1007/s10495-011-0695-9
  • 发表时间:
    2012-01-18
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay
  • 通讯作者:
    Santu Bandyopadhyay

Sourav Chatterjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sourav Chatterjee', 18)}}的其他基金

Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
  • 批准号:
    2153654
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
  • 批准号:
    2113242
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity
格规理论、重要性采样和量子唯一遍历性
  • 批准号:
    1608249
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
  • 批准号:
    1441513
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
  • 批准号:
    1309618
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Random Structures and Limit Objects
随机结构和限制对象
  • 批准号:
    1237838
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Disordered systems, dense graphs, normal approximation and applications
无序系统、稠密图、正态逼近及应用
  • 批准号:
    1005312
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Normal Approximation, Fair Allocations, Interacting Brownian Particles, and Applications
正态近似、公平分配、相互作用的布朗粒子和应用
  • 批准号:
    0707054
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
  • 批准号:
    2473795
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
  • 批准号:
    2901112
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Engineering Future Quantum Technologies in Low-Dimensional Systems
低维系统中的未来量子技术工程
  • 批准号:
    MR/X006077/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
  • 批准号:
    DP240100961
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了