Two-Dimensional KPZ Evolution, Fluctuation Lower Bounds, and Ultrametricity
二维 KPZ 演化、波动下界和超计量性
基本信息
- 批准号:1855484
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns several problems in probability theory. One class of problems addresses the evolution of random surfaces according to the KPZ equation, named after its discoverers, Kardar, Parisi, and Zhang. Random surfaces have attracted a lot of recent attention in probability theory, and there are many unanswered questions. This project will aim to answer some of these questions. A second class of problems involves extending and developing a theory of lower bounds on fluctuations of random variables. Understanding fluctuations of random variables is one of the basic goals of probability theory, but there are many important problems where existing methods do not give desirable results. The PI aims to make some progress in this area by providing a new set of tools. Finally, a third class of problems centers around understanding ultrametric spaces that arise in the study of models from statistical mechanics. The strategy of working on problems in varied areas of probability theory at the same time has the potential of uncovering new connections.The problems concerning the KPZ evolution are mainly about producing a solution of the equation in 2D. This would be an important breakthrough because the task of constructing any solution for the 2D KPZ equation has remained intractable so far. The results about fluctuation lower bounds would give the optimal conditions under which the current best lower bounds can be proved for planar growth models. Previously, such lower bounds required restrictive conditions. The proposed method of solution is based on a novel coupling, which may be of independent interest. The research on ultrametricity will shed light on the hierarchical organization of states in spin glass models, especially for models with full replica symmetry breaking. It will also introduce a novel connection between the study of these models and tools from graph theory such as Szemeredi's regularity lemma.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及概率论中的几个问题。一类问题根据 KPZ 方程解决随机表面的演化问题,KPZ 方程以其发现者卡达尔 (Kardar)、帕里西 (Parisi) 和张 (Zhang) 的名字命名。随机曲面最近在概率论中引起了很多关注,并且有许多未解答的问题。该项目旨在回答其中一些问题。第二类问题涉及扩展和发展随机变量波动下界理论。理解随机变量的波动是概率论的基本目标之一,但现有方法在许多重要问题上无法给出理想的结果。 PI 旨在通过提供一套新工具在该领域取得一些进展。最后,第三类问题集中于理解统计力学模型研究中出现的超度量空间。同时研究概率论不同领域问题的策略具有发现新联系的潜力。KPZ 演化的问题主要是产生二维方程的解。这将是一个重要的突破,因为到目前为止,构建二维 KPZ 方程的任何解的任务仍然很棘手。关于波动下界的结果将给出可以证明平面增长模型的当前最佳下界的最佳条件。 此前,这样的下限需要限制性条件。所提出的解决方法基于一种新颖的耦合,这可能具有独立的意义。超计量性的研究将揭示自旋玻璃模型中状态的层次结构,特别是对于完全复制对称性破缺的模型。它还将引入这些模型的研究与图论工具(例如 Szemeredi 正则引理)之间的新颖联系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence of Deterministic Growth Models
确定性增长模型的收敛
- DOI:10.1007/s00205-022-01798-w
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Chatterjee, Sourav;Souganidis, Panagiotis E.
- 通讯作者:Souganidis, Panagiotis E.
Average Gromov hyperbolicity and the Parisi ansatz
平均格罗莫夫双曲性和帕里西 ansatz
- DOI:10.1016/j.aim.2020.107417
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Chatterjee, Sourav;Sloman, Leila
- 通讯作者:Sloman, Leila
A Deterministic Theory of Low Rank Matrix Completion
- DOI:10.1109/tit.2020.3019569
- 发表时间:2020-12-01
- 期刊:
- 影响因子:2.5
- 作者:Chatterjee, Sourav
- 通讯作者:Chatterjee, Sourav
Constructing a solution of the $(2+1)$-dimensional KPZ equation
构造 $(2 1)$ 维 KPZ 方程的解
- DOI:10.1214/19-aop1382
- 发表时间:2020
- 期刊:
- 影响因子:2.3
- 作者:Chatterjee, Sourav;Dunlap, Alexander
- 通讯作者:Dunlap, Alexander
A SIMPLE MEASURE OF CONDITIONAL DEPENDENCE
- DOI:10.1214/21-aos2073
- 发表时间:2021-12-01
- 期刊:
- 影响因子:4.5
- 作者:Azadkia, Mona;Chatterjee, Sourav
- 通讯作者:Chatterjee, Sourav
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sourav Chatterjee其他文献
Spectral gap of nonreversible Markov chains
不可逆马尔可夫链的谱隙
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sourav Chatterjee - 通讯作者:
Sourav Chatterjee
MetQuan - A Comprehensive Toolkit for Variational Quantum Sensing and Metrology
MetQuan - 用于变分量子传感和计量的综合工具包
- DOI:
10.1109/comsnets59351.2024.10427198 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kunal Sinha;Rajas Dalvi;M. G. Chandra;Sourav Chatterjee - 通讯作者:
Sourav Chatterjee
Retraction Note: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
- DOI:
10.1007/s10495-024-02007-7 - 发表时间:
2024-07-23 - 期刊:
- 影响因子:8.100
- 作者:
Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay - 通讯作者:
Santu Bandyopadhyay
Liouville Theory: An Introduction to Rigorous Approaches
刘维尔理论:严格方法简介
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sourav Chatterjee;Edward Witten - 通讯作者:
Edward Witten
RETRACTED ARTICLE: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
- DOI:
10.1007/s10495-011-0695-9 - 发表时间:
2012-01-18 - 期刊:
- 影响因子:8.100
- 作者:
Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay - 通讯作者:
Santu Bandyopadhyay
Sourav Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sourav Chatterjee', 18)}}的其他基金
Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
- 批准号:
2153654 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
- 批准号:
2113242 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity
格规理论、重要性采样和量子唯一遍历性
- 批准号:
1608249 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
- 批准号:
1441513 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
- 批准号:
1309618 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Disordered systems, dense graphs, normal approximation and applications
无序系统、稠密图、正态逼近及应用
- 批准号:
1005312 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Normal Approximation, Fair Allocations, Interacting Brownian Particles, and Applications
正态近似、公平分配、相互作用的布朗粒子和应用
- 批准号:
0707054 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
- 批准号:
DP240100961 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
- 批准号:
DP240102006 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
- 批准号:
2901112 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant














{{item.name}}会员




