Disordered systems, dense graphs, normal approximation and applications
无序系统、稠密图、正态逼近及应用
基本信息
- 批准号:1005312
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is proposed to study several problems in probability.One class of problems concerns the structure of high-dimensional Gaussian fields, with applications to the study of disordered systems, including spin glasses and polymers. A second class of problems involves dense random graphs, including unsolved questions about large deviations of subgraph counts and the properties of graphs with a given degree sequence. Finally, a third class of problems centers around a continuation of the proposer's earlier work of normal approximation in modern problems. Sensitivity to small perturbations in physical systems is broadly known as chaos. The proposer wishes to study the phenomenon of chaos in disordered systems, which are simplified physical models of materials that exhibit so-called `glassy' properties. The key focus of this proposal is on certain kinds of magnetic materials known as spin glasses. These have been studied by physicists and mathematicians for nearly forty years, but various aspects of their behavior are still shrouded in mystery, one of them being chaos. The proposer believes that he has new mathematical tools to understand this elusive phenomenon, which he has already successfully applied to certain polymer models in the past.
提出了研究概率论中的几个问题,其中一类问题涉及高维高斯场的结构,并应用于无序系统的研究,包括自旋玻璃和聚合物。第二类问题涉及稠密的随机图,包括未解决的问题的大偏差的子图计数和具有给定的度序列的图形的属性。最后,第三类问题的中心围绕着延续的提议者的早期工作正常的近似在现代问题。在物理系统中,对小扰动的敏感性被广泛地称为混沌。提议者希望研究无序系统中的混沌现象,无序系统是表现出所谓“玻璃”性质的材料的简化物理模型。这项提议的重点是某些被称为自旋玻璃的磁性材料。物理学家和数学家已经研究了近40年,但它们行为的各个方面仍然笼罩在神秘之中,其中之一就是混沌。这位提议者认为,他有新的数学工具来理解这种难以捉摸的现象,他过去已经成功地将其应用于某些聚合物模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sourav Chatterjee其他文献
Spectral gap of nonreversible Markov chains
不可逆马尔可夫链的谱隙
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sourav Chatterjee - 通讯作者:
Sourav Chatterjee
MetQuan - A Comprehensive Toolkit for Variational Quantum Sensing and Metrology
MetQuan - 用于变分量子传感和计量的综合工具包
- DOI:
10.1109/comsnets59351.2024.10427198 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kunal Sinha;Rajas Dalvi;M. G. Chandra;Sourav Chatterjee - 通讯作者:
Sourav Chatterjee
Retraction Note: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
- DOI:
10.1007/s10495-024-02007-7 - 发表时间:
2024-07-23 - 期刊:
- 影响因子:8.100
- 作者:
Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay - 通讯作者:
Santu Bandyopadhyay
Liouville Theory: An Introduction to Rigorous Approaches
刘维尔理论:严格方法简介
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sourav Chatterjee;Edward Witten - 通讯作者:
Edward Witten
RETRACTED ARTICLE: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
- DOI:
10.1007/s10495-011-0695-9 - 发表时间:
2012-01-18 - 期刊:
- 影响因子:8.100
- 作者:
Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay - 通讯作者:
Santu Bandyopadhyay
Sourav Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sourav Chatterjee', 18)}}的其他基金
Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
- 批准号:
2153654 - 财政年份:2022
- 资助金额:
$ 34.67万 - 项目类别:
Standard Grant
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
- 批准号:
2113242 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Standard Grant
Two-Dimensional KPZ Evolution, Fluctuation Lower Bounds, and Ultrametricity
二维 KPZ 演化、波动下界和超计量性
- 批准号:
1855484 - 财政年份:2019
- 资助金额:
$ 34.67万 - 项目类别:
Continuing Grant
Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity
格规理论、重要性采样和量子唯一遍历性
- 批准号:
1608249 - 财政年份:2016
- 资助金额:
$ 34.67万 - 项目类别:
Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
- 批准号:
1441513 - 财政年份:2013
- 资助金额:
$ 34.67万 - 项目类别:
Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
- 批准号:
1309618 - 财政年份:2013
- 资助金额:
$ 34.67万 - 项目类别:
Continuing Grant
Normal Approximation, Fair Allocations, Interacting Brownian Particles, and Applications
正态近似、公平分配、相互作用的布朗粒子和应用
- 批准号:
0707054 - 财政年份:2007
- 资助金额:
$ 34.67万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
新型非对称频分双工系统及其射频关键技术研究
- 批准号:61102055
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
- 批准号:60572117
- 批准年份:2005
- 资助金额:6.0 万元
- 项目类别:面上项目
相似海外基金
CRCNS: Dense longitudinal neuroimaging to evaluate learning in childhood
CRCNS:密集纵向神经影像评估儿童学习情况
- 批准号:
10835136 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Parallel Lines: Ultra-dense optical systems for extreme data-rates
平行线:用于极端数据速率的超密集光学系统
- 批准号:
FT220100835 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
ARC Future Fellowships
Black hole discs in dense stellar systems
致密恒星系统中的黑洞盘
- 批准号:
2888258 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Studentship
Coupling regional brain tissues with tissue chips
将区域脑组织与组织芯片耦合
- 批准号:
10631165 - 财政年份:2022
- 资助金额:
$ 34.67万 - 项目类别:
Coupling regional brain tissues with tissue chips
将区域脑组织与组织芯片耦合
- 批准号:
10527012 - 财政年份:2022
- 资助金额:
$ 34.67万 - 项目类别:
Role of Distortion Energy in Fibroblast-Mediated Remodeling of Collagen Matrices
畸变能在成纤维细胞介导的胶原基质重塑中的作用
- 批准号:
10452423 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Research on dense observing network of precipitable water by using on-vehicle low-cost GNSS receiver systems
车载低成本GNSS接收系统密集降水量观测网络研究
- 批准号:
20K21847 - 财政年份:2020
- 资助金额:
$ 34.67万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Multivalent Nano-conjugates for Targeted Penetration of and Delivery to Dense Extracellular Matrices
用于靶向渗透和递送至致密细胞外基质的多价纳米缀合物
- 批准号:
10286340 - 财政年份:2020
- 资助金额:
$ 34.67万 - 项目类别:














{{item.name}}会员




