CMP: Charge Fractionalization and Spin Charge Separation in One Dimensional Conductors

CMP:一维导体中的电荷分级和自旋电荷分离

基本信息

  • 批准号:
    0707484
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

****NON-TECHNICAL ABSTRACT****Matter is constructed from fundamental building blocks. These may be the elementary particles like quarks that construct neutrons and protons. They may be less fundamental, like the atoms when describing the structure of crystals. Moreover, depending on the level of description, they may even be simply fundamental excitation modes such as those describing the vibration of a guitar string. Identifying the relevant building blocks and unraveling their properties is an essential step in formulating our description and understanding of matter. In electronic systems, such as conventional metals, the electrons themselves constitute the elementary building block for the description of many of its properties such as the electrical conductivity and heat capacity. Despite their vast number and the electrical interaction (known as the Coulomb interaction) amongst them, the electrons continue to behave as independent particles with one unit of charge and a magnetic property called spin. Surprisingly, such a simple description of electronic systems, known as Fermi liquid theory, is valid only in two and three spatial dimensions. In one-dimensional metals, where electrons are forced to move along a straight line, the inclusion of Coulomb interactions completely breaks the single particle description. The elementary building blocks of a one-dimensional system can carry independently spin and charge and the charge carriers are fractionalized into quantities that are smaller than the unit of an electron charge. This project seeks to understand the nature of these elementary building blocks present in the one-dimensional world, by using state of the art experimental techniques to investigate novel one-dimensional systems. This project educates students at the interface between fundamental condensed matter physics and the more applied aspects of Nano-Science. The interdisciplinary character of the research will produce students who are used to communicating across disciplines. Such skills are of ever greater importance as fundamental and applied sciences approach one another.**** TECHNICAL ABSTRACT****Quantum one-dimensional (1D) systems can carry charge in units smaller than a single electron charge. This unique effect is a result of the repulsive Coulomb electron-electron interactions. According to Luttinger Liquid theory, which describes the low-energy excitations of such systems, an electron added near either Fermi point is expected to decompose into two counter propagating charge-excitations carrying charges Q(+)=(1+g)/2 and Q(-)=(1-g)/2 where g1 for repulsive interactions. Observing fractionalization physics in an experiment is a considerable challenge. A well-known example is the elementary excitations of the Fractional Quantum Hall (FQH) state. These carry charge fractions of the form 1/m, m being an odd integer. However, the predicted charge fractionalization in quantum wires has not been observed experimentally. This project utilizes a novel technique for direct measurement of charge fractionalization in quantum wires. A double-wire geometry will be used. Through momentum conservation in the tunneling process between the two wires, unidirectional electrons will be injected into the bulk of a wire, with fractionalization resulting in currents detected on both sides of the injection region. The ratio of these currents together with a 2-terminal reference measurement would enable the determination of the extent of charge fractionalization and its dependence on various system parameters such as the carrier density and disorder. This challenging project educates students at the interface between fundamental condensed matter physics and the more applied aspects of Nano-Science. The interdisciplinary character of the research will produce students who are used to communicating across disciplines. Such skills are of ever greater importance as fundamental and applied sciences approach one another.
* 非技术性摘要 * 物质是由基本的构建块构成的。它们可能是构成中子和质子的基本粒子,如夸克。它们可能不那么基本,就像描述晶体结构时的原子一样。此外,根据描述的水平,它们甚至可以是简单的基本激励模式,例如描述吉他弦振动的那些。识别相关的构建块并解开它们的属性是制定我们对物质的描述和理解的重要步骤。在电子系统中,例如传统金属,电子本身构成了描述其许多性质(例如电导率和热容量)的基本构建块。尽管它们的数量巨大,并且它们之间存在电相互作用(称为库仑相互作用),但电子继续表现为具有一个单位电荷和称为自旋的磁性的独立粒子。令人惊讶的是,这种简单的电子系统描述,即费米液体理论,只在二维和三维空间中有效。在一维金属中,电子被迫沿着直线运动,库仑相互作用的引入完全打破了单粒子描述。一维系统的基本构建块可以独立地携带自旋和电荷,并且电荷载流子被细分为小于电子电荷单位的量。该项目旨在通过使用最先进的实验技术来研究新的一维系统,来了解这些存在于一维世界中的基本构建块的性质。该项目教育学生在基本凝聚态物理学和纳米科学的更多应用方面之间的接口。研究的跨学科性质将产生谁是用于跨学科交流的学生。随着基础科学和应用科学的相互接近,这些技能变得越来越重要。技术摘要 * 量子一维(1D)系统可以携带比单个电子电荷更小的单位的电荷。这种独特的效应是电子-电子相互作用的结果。根据描述这种系统的低能激发的Luttinger液体理论,在任一费米点附近添加的电子预期分解成两个携带电荷Q(+)=(1+g)/2和Q(-)=(1-g)/2的反向传播电荷激发,其中g1表示排斥相互作用。在实验中观察分馏物理是一个相当大的挑战。一个著名的例子是分数量子霍尔(Fractional Quantum Hall,缩写为HH)态的元激发。它们携带1/m形式的电荷分数,m是奇数。然而,在量子线中的电荷分馏预测还没有被实验观察到。该项目利用一种新技术直接测量量子线中的电荷分馏。将使用双线几何结构。通过在两条导线之间的隧穿过程中的动量守恒,单向电子将被注入导线的主体中,其中碎裂导致在注入区域的两侧检测到电流。这些电流的比率与2端参考测量一起将使得能够确定电荷分馏的程度及其对各种系统参数(例如载流子密度和无序)的依赖性。这个具有挑战性的项目教育学生在基础凝聚态物理学和纳米科学的更多应用方面之间的接口。研究的跨学科性质将产生谁是用于跨学科交流的学生。随着基础科学和应用科学的相互接近,这些技能变得越来越重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Yacoby其他文献

An adaptive moiré sensor for spectro-polarimetric hyperimaging
一种用于光谱偏振超成像的自适应莫尔传感器
  • DOI:
    10.1038/s41566-025-01650-z
  • 发表时间:
    2025-04-03
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Haoning Tang;Beicheng Lou;Fan Du;Guangqi Gao;Mingjie Zhang;Xueqi Ni;Evelyn Hu;Amir Yacoby;Yuan Cao;Shanhui Fan;Eric Mazur
  • 通讯作者:
    Eric Mazur
Microscopic Structure of the Metal-Insulator Transition in Two Dimensions
二维金属-绝缘体转变的微观结构
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    S. Ilani;Amir Yacoby;D. Mahalu;H. Shtrikman
  • 通讯作者:
    H. Shtrikman
Electron liquids and solids in one dimension
一维电子液体和固体
  • DOI:
    10.1038/nature08918
  • 发表时间:
    2010-03-10
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Vikram V. Deshpande;Marc Bockrath;Leonid I. Glazman;Amir Yacoby
  • 通讯作者:
    Amir Yacoby
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
用基于金刚石中氮空位中心的磁力测量探测凝聚态物理
  • DOI:
    10.1038/natrevmats.2017.88
  • 发表时间:
    2018-01-04
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Francesco Casola;Toeno van der Sar;Amir Yacoby
  • 通讯作者:
    Amir Yacoby
Imaging AC magnetization response of soft magnetic thin films using diamond quantum sensors
使用金刚石量子传感器对软磁薄膜的交流磁化响应进行成像
  • DOI:
    10.1038/s43246-025-00812-4
  • 发表时间:
    2025-05-23
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Ryota Kitagawa;Aoi Nakatsuka;Teruo Kohashi;Takeyuki Tsuji;Honami Nitta;Kosuke Mizuno;Yota Takamura;Shigeki Nakagawa;Takayuki Iwasaki;Amir Yacoby;Mutsuko Hatano
  • 通讯作者:
    Mutsuko Hatano

Amir Yacoby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Yacoby', 18)}}的其他基金

WORKSHOP: NSF Frontiers of Experimental Condensed Matter Physics (CMP) Principal Investigators Workshop on Materials for the Quantum Revolution
研讨会:NSF 实验凝聚态物理前沿 (CMP) 首席研究员量子革命材料研讨会
  • 批准号:
    1743724
  • 财政年份:
    2017
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Induced Topological Superconductivity in Two Dimensional Systems
二维系统中的诱导拓扑超导
  • 批准号:
    1708688
  • 财政年份:
    2017
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Spin, Heat and Charge Transport in Quantum Hall Edge Modes
量子霍尔边缘模式中的自旋、热和电荷传输
  • 批准号:
    1206016
  • 财政年份:
    2012
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
PIF: Few Electron Logical Qubits and Cross Chip Shuttling of Quantum Information
PIF:很少的电子逻辑量子位和量子信息的跨芯片穿梭
  • 批准号:
    0653336
  • 财政年份:
    2007
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant

相似国自然基金

CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Sema3E在CHARGE综合症中的作用及机制研究
  • 批准号:
    81160144
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
  • 批准号:
    2325147
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
  • 批准号:
    2400727
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
STTR Phase I: Potassium Ion Battery with Intermediate Charge Rate Competes with Lithium Ferrophosphate (LFP)-based Lithium-Ion Batteries (LIBs)
STTR 第一阶段:具有中等充电速率的钾离子电池与基于磷酸铁锂 (LFP) 的锂离子电池 (LIB) 竞争
  • 批准号:
    2332113
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
  • 批准号:
    2347542
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Charge Patterning and Molecular Interactions in the Phase Behavior of Polyelectrolyte/Particle Solutions
聚电解质/颗粒溶液相行为中的电荷模式和分子相互作用
  • 批准号:
    2347031
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Charge-Controlled Materials for Separations of Important Resources
用于分离重要资源的电荷控制材料
  • 批准号:
    DP240103089
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Projects
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
  • 批准号:
    2308860
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CAREER: Interplay of sliding ferroelectricity, spin and charge orderings in layered quantum materials
职业:层状量子材料中滑动铁电性、自旋和电荷排序的相互作用
  • 批准号:
    2237761
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
  • 批准号:
    2322706
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
EAGER: Controlling active site arrangement in zeolites through OSDA charge distribution
EAGER:通过 OSDA 电荷分布控制沸石中的活性位点排列
  • 批准号:
    2331027
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了