High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
基本信息
- 批准号:RGPIN-2020-05807
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fully homomorphic encryption (FHE) is a way of encrypting data that enables users to perform an arbitrary sequence of operations, such as addition or multiplication, on the data without having to decrypt to do so. The capacity to compute on encrypted data is extremely useful, as it allows for services to be performed on sensitive personal data on an untrusted cloud-based machine without ever compromising either the security or privacy of the data during. Performing the mathematical operations using the underlying lattice-based mathematics uses a great deal of compute time and memory. Until now, these computational costs have held back FHE technology from practical use in many large-scale, real-world applications. Breaking through this compute cost barrier is the core research challenge addressed by the proposed research program. Many different mathematical foundations have been used and are in development to realize FHE at greater computational efficiencies. A common technique to accelerate an FHE scheme is to encrypt multiple bits of data or operands simultaneously into a single polynomial used, or to utilize parallel computational hardware that exploits the inherent mathematical structure found in FHE matrix algebra operations. Both graphic processing units (GPUs) and field-programmable gate arrays (FPGAs) have been used as hardware platforms to accelerate FHE schemes in these ways. Challenges exist for each of these hardware platforms. For example, encrypted data requires significantly more memory storage and bandwidth than plaintext data, to the point where it easily exceeds the capabilities of off-the-shelf FPGAs in high-performance applications. Single-purpose, dedicated, hardware accelerators for FHE as realized by state-of-the-art CMOS system-on-chip (SoC) technologies will provide greatly accelerated performance enabling widespread enterprise-scale applications. An important application of FHE that has not yet been optimized for hardware-based acceleration is the implementation of kernel logistic regression machine learning models for very large multi-dimensional data sets. Kernel logistic regression is a classification technique which, given a set of inputs, calculates the probability that the input belongs to a certain class as defined by a complex decision surface. This operation is key to many machine learning applications. The goal of this research program is identify scalable, VLSI hardware acceleration architectures and circuits that can reduce the execution time taken to run machine learning inference models on encrypted data by two orders of magnitude, enabling machine learning problems that currently take hours to be solved in minutes. If this is achieved, it would pave the way for widespread implementation of secure, private, cost-effective, cloud-based FHE implementations of machine learning models that guarantee the security and privacy of the data, the models and the inferences generated.
全同态加密(FHE)是一种加密数据的方法,使用户能够对数据执行任意序列的操作,如加法或乘法,而无需解密。对加密数据进行计算的能力非常有用,因为它允许在不受信任的基于云的机器上对敏感的个人数据执行服务,而不会损害数据的安全性或隐私。使用底层的基于格的数学来执行数学运算会使用大量的计算时间和内存。到目前为止,这些计算成本阻碍了FHE技术在许多大规模现实应用中的实际使用。 突破这一计算成本障碍是拟议研究计划所面临的核心研究挑战。许多不同的数学基础已被使用,并在开发中,以实现FHE在更大的计算效率。加速FHE方案的常见技术是将多位数据或操作数同时加密成所使用的单个多项式,或者利用利用FHE矩阵代数运算中发现的固有数学结构的并行计算硬件。图形处理单元(GPU)和现场可编程门阵列(FPGA)都被用作硬件平台,以这些方式加速FHE方案。这些硬件平台都存在挑战,例如,加密数据需要的内存存储和带宽远远超过明文数据,在高性能应用中很容易超过现成FPGA的能力。FHE的专用硬件加速器采用最先进的CMOS片上系统(SoC)技术实现,可大幅提高性能,从而支持广泛的企业级应用。尚未针对基于硬件的加速进行优化的FHE的一个重要应用是针对非常大的多维数据集实现内核逻辑回归机器学习模型。核逻辑回归是一种分类技术,它在给定一组输入的情况下,计算输入属于由复杂决策表面定义的某个类别的概率。 这个操作是许多机器学习应用程序的关键。 该研究计划的目标是确定可扩展的VLSI硬件加速架构和电路,可以将在加密数据上运行机器学习推理模型所需的执行时间减少两个数量级,使目前需要数小时的机器学习问题在几分钟内得到解决。如果实现了这一点,它将为机器学习模型的安全,私有,经济高效,基于云的FHE实现的广泛实施铺平道路,这些实现保证了数据,模型和生成的推断的安全性和隐私性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gulak, Glenn其他文献
A High-Throughput VLSI Architecture for Hard and Soft SC-FDMA MIMO Detectors
- DOI:
10.1109/tcsi.2014.2380637 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:5.1
- 作者:
Neshatpour, Katayoun;Shabany, Mahdi;Gulak, Glenn - 通讯作者:
Gulak, Glenn
Gulak, Glenn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gulak, Glenn', 18)}}的其他基金
High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
- 批准号:
RGPIN-2020-05807 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
- 批准号:
RGPIN-2020-05807 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Architectures for Digital Communications
数字通信算法和架构
- 批准号:
RGPIN-2015-05376 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Architectures for Digital Communications
数字通信算法和架构
- 批准号:
RGPIN-2015-05376 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Market Assessment for Rapid Bacterial Identification Diagnostic
快速细菌鉴定诊断的市场评估
- 批准号:
531911-2018 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Idea to Innovation
Custom FPGA System for Intelligent Bed Sheet Patient Monitor
用于智能床单病人监护仪的定制 FPGA 系统
- 批准号:
522726-2017 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Engage Grants Program
Algorithms and Architectures for Digital Communications
数字通信算法和架构
- 批准号:
RGPIN-2015-05376 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Architectures for Digital Communications
数字通信算法和架构
- 批准号:
RGPIN-2015-05376 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Architectures for Digital Communications
数字通信算法和架构
- 批准号:
RGPIN-2015-05376 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
A Wireless CMOS Device for Rapid Point-of-Care Diagnosis of Bacterial Infections and Antibiotic Susceptibility Profiling
用于细菌感染快速护理诊断和抗生素敏感性分析的无线 CMOS 设备
- 批准号:
462274-2014 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Health Research Projects
相似海外基金
Drag Prediction over Rough Surfaces using Hardware-Accelerated Simulations
使用硬件加速模拟对粗糙表面进行阻力预测
- 批准号:
DE230100754 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
- 批准号:
RGPIN-2020-05807 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Hardware-Accelerated Implementation of a Neural Pathway Classifier on Ultra-low-power FPGA
在超低功耗 FPGA 上硬件加速实现神经通路分类器
- 批准号:
572677-2022 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
University Undergraduate Student Research Awards
Network-on-Chip Architectures in Hardware-Accelerated Application-Specific Integrated Circuits
硬件加速专用集成电路中的片上网络架构
- 批准号:
566266-2021 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach
REU 网站:通过硬件-软件协作方法加速深度学习的跨学科研究经验
- 批准号:
2051062 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
CAREER: Effectuating Hardware-Accelerated Systems with Domain-Specific Primitives
职业:使用特定于领域的原语实现硬件加速系统
- 批准号:
2045974 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
- 批准号:
RGPIN-2020-05807 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
- 批准号:
2028876 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
CNS Core: Small: A Hardware/Software Infrastructure for Secured Multi-Tenancy in FPGA-Accelerated Cloud and Datacenters
CNS 核心:小型:用于 FPGA 加速云和数据中心中安全多租户的硬件/软件基础设施
- 批准号:
2007320 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant