Locality and separability in algebraic quantum field theory

代数量子场论中的局域性和可分离性

基本信息

  • 批准号:
    0749856
  • 负责人:
  • 金额:
    $ 0.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

The project proposed for this Doctoral Dissertation Research Improvement Grant is an important part of Giovanni Valente's dissetation, titled "Locality and Non-Separability in Algebraic Quantum Field Theory." The requested amount of funding ($3000 in total) is intended to support a two-month visit to the Department of Philosophy at Princeton University, where the student will work under Prof. Hans Halvorson, who is also the co-director of Giovanni's dissertation, together with Prof. Jeffrey Bub (University of Maryland). Specifically, the goal of the research to be conducted in Princeton is to construct an algebraic formulation of Jarrett's decomposition of Bell's inequalities, isolating two conditions, called parameter independence and outcome independence. Such conditions will be then generalized to Quantum Field Theory and their close relation to the concepts of locality and separability will be discussed. Moreover, a paper published by Halvorson together with Clifton in 2001, which proves that in Algebraic Quantum Field Theory one cannot perform any local operation that destroys entanglement correlations between two spatially separated systems, will be further developed and connected to the other results of the dissertation. The aim of the project is to demonstrate the intrinsic non-separability of quantum field theory. The intellectual merit of the proposed activity consists in the attempt of clarifying the notions of locality and correlations between spatially separated systems, which have been largely discussed in Special Relativity and Quantum Mechanics, but have not been explored enough in detail in the context of Algebraic Quantum Field Theory. In particular, the literature on the topic lacks any re-formulation in algebraic terms of Jarrett's decomposition of the Bell's inequalities. Furthermore, the concept of (non-)separability has not received a rigorous formalization in the context of quantum field theory. Given the highly technical nature of the subject, the work is of interest not only for philosophy of physics, but also for mathematical physics. In fact, we intend to submit the resulting research papers to journals in both fields. As to the broader impacts of the proposed activity, the plan is to disseminate the results of the research accomplished by Valente under the supervision of Prof. Halvorson through talks and presentations at various meetings and conferences on foundations of physics as well as on philosophy of science. It is in this spirit that one should understand one of the major objectives of the entire dissertation. That is offering a simplified discussion of the structure of Algebraic Quantum Field Theory, so that its mathematical details, as well as the relevant philosophical issues, could be made accessible even to those who do not have a particularly sophisticated technical background.
为这篇博士论文提出的研究改进补助金是乔瓦尼·瓦伦特的著作《代数量子场论中的局部性和不可分离性》的重要组成部分。申请的资助金额(总计3000美元)旨在支持对普林斯顿大学哲学系为期两个月的访问,学生将在那里的汉斯·哈尔沃森教授和杰弗里·布布教授(马里兰大学)一起工作,哈沃森教授也是乔瓦尼论文的联合主任。具体地说,这项将在普林斯顿进行的研究的目标是构建Jarrett分解贝尔不等式的代数公式,分离出两个条件,称为参数独立性和结果独立性。然后将这些条件推广到量子场论,并讨论它们与局域性和可分性概念的密切关系。此外,Halvorson和Clifton在2001年发表的一篇论文证明,在代数量子场论中,一个人不能进行任何破坏两个空间分离系统之间纠缠关联的局域操作,该论文将进一步发展并与论文的其他结果相联系。该项目的目的是证明量子场论的内在不可分性。拟议活动的学术价值在于试图澄清空间上分离的系统之间的局域性和相关性的概念,这些概念在狭义相对论和量子力学中已经有很大讨论,但在代数量子场论的背景下还没有得到足够详细的探索。特别是,关于这一主题的文献缺乏任何关于Jarrett对贝尔不等式的分解的代数形式的重新表述。此外,在量子场论的背景下,(不可)可分性的概念还没有得到严格的形式化。鉴于这门学科的高度技术性,这项工作不仅对物理哲学感兴趣,而且对数学物理也很感兴趣。事实上,我们打算向这两个领域的期刊提交由此产生的研究论文。至于拟议活动的更广泛影响,计划通过在各种关于物理学基础和科学哲学的会议和会议上的演讲和演讲,传播瓦伦特在哈尔沃森教授的指导下完成的研究成果。正是本着这种精神,我们应该理解整篇论文的主要目的之一。这是对代数量子场论结构的简化讨论,以便即使那些没有特别复杂的技术背景的人也可以接触到它的数学细节和相关的哲学问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Bub其他文献

How to interpret quantum mechanics
如何诠释量子力学
  • DOI:
    10.1007/bf01128832
  • 发表时间:
    1994-09-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Jeffrey Bub
  • 通讯作者:
    Jeffrey Bub
Interference, noncommutativity, and determinateness in quantum mechanics
On local realism and commutativity
  • DOI:
    10.1016/j.shpsb.2007.02.003
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Allen Stairs;Jeffrey Bub
  • 通讯作者:
    Jeffrey Bub
Correlations, Contextuality and Quantum Logic
  • DOI:
    10.1007/s10992-013-9272-8
  • 发表时间:
    2013-04-02
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Allen Stairs;Jeffrey Bub
  • 通讯作者:
    Jeffrey Bub
The problem of properties in quantum mechanics

Jeffrey Bub的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Bub', 18)}}的其他基金

Doctoral Dissertation Research: Developing a New Framework for Analyzing the Information-Theoretic Interpretation of Quantum Theory
博士论文研究:开发分析量子理论信息论解释的新框架
  • 批准号:
    1431229
  • 财政年份:
    2014
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Standard Grant
Quantum Foundations in the Light of Quantum Information
量子信息中的量子基础
  • 批准号:
    0522398
  • 财政年份:
    2006
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Continuing Grant
On the Logic of Testing Models of Cognition Through the Analysis of Brain-Damaged Performance
论通过脑损伤表现分析测试认知模型的逻辑
  • 批准号:
    9122696
  • 财政年份:
    1992
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Standard Grant
On the Logic of Testing Models of Cognition Through the Analysis of Brain-Damaged Performance
论通过脑损伤表现分析测试认知模型的逻辑
  • 批准号:
    9012399
  • 财政年份:
    1990
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Standard Grant

相似海外基金

Graphical Modeling of High-Dimensional Functional Data: Separability Structures and Unified Methodology under General Observational Designs
高维函数数据的图形建模:一般观测设计下的可分离结构和统一方法
  • 批准号:
    2310943
  • 财政年份:
    2023
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Standard Grant
Meaning in Science, Evaluative Scientific Concepts, and the Fact-Value Separability of Mixed Social Science
科学意义、评价性科学概念以及混合社会科学的事实-价值可分离性
  • 批准号:
    2607368
  • 财政年份:
    2021
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Studentship
Examining separability of crop boom and land grabbing in developing countries: a case study of the melon boom in Myanmar
检验发展中国家农作物繁荣与土地掠夺的可分离性:以缅甸甜瓜繁荣为例
  • 批准号:
    21K12445
  • 财政年份:
    2021
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
First-Principles Statistical Thermodynamics and Materials Informatics Considering Weak Interactions: Exploring Gas Separability of Deep Eutectic Solvents
考虑弱相互作用的第一性原理统计热力学和材料信息学:探索深共晶溶剂的气体分离性
  • 批准号:
    21H01894
  • 财政年份:
    2021
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Separability properties of different fermion-qubit mappings
不同费米子量子位映射的可分离性属性
  • 批准号:
    550485-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.3万
  • 项目类别:
    University Undergraduate Student Research Awards
An Investigation of Separability and Collective Goods in Household Consumption Behavior
家庭消费行为中的可分离性和集体物品调查
  • 批准号:
    19H01467
  • 财政年份:
    2019
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of evaluation system and training program for autism spectrum disorder using weighted separability index of prefrontal cortex.
利用前额皮质加权可分离指数建立自闭症谱系障碍评估体系和训练方案
  • 批准号:
    16K04842
  • 财政年份:
    2016
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generic properties for separability criteria
可分离性标准的通用属性
  • 批准号:
    433533-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 0.3万
  • 项目类别:
    University Undergraduate Student Research Awards
A study on Scheepers' conjecture of special subsets of reals in view of a sequence of upper semi-continuous functions
考虑上半连续函数序列的实数特殊子集Scheepers猜想研究
  • 批准号:
    22540154
  • 财政年份:
    2010
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Separability and logic in geometric group theory
几何群论中的可分离性和逻辑
  • 批准号:
    0906276
  • 财政年份:
    2009
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了