Collaborative Research: Cluster Algebras, Canonical Bases and Nets on Surfaces of Higher Genus
合作研究:簇代数、规范基和更高属面上的网络
基本信息
- 批准号:0801204
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores links between classical combinatorics, modern theory of Teichmueller spaces, real algebraic geometry and total positivity, and the rapidly developing theory of cluster algebras. In particlular, PIs utilize the link between decorated Teichmueller spaces and the algebra of geodesics on the one hand and the theory of cluster algebras on the other hand to investigate the structure of the dual canonical basis of a cluster algebra. Furthermore, they use cluster algebra point of view to study directed nets on surfaces and describe compatible Poisson-Lie structures for nets and solutions of corresponding inverse problems and to study associated integrable hierarchies. The latter will be applied to investigate new relations between double Hurwitz numbers of coverings of the sphere by higher genus curves and, on the other hand, to analyze a new two- and multi-matrix models and associated biorthogonal polynomials and apply them to problems of enumeration of bicolored embedded graphs.Space discretization using networks on surfaces is an important in the theory of random processes, in mathematical physics, including 2D gravity, the theory of electric potential and especially theory of electrical networks and in other fields.Combinatorial properties of surface networks capture crucial features of complex mathematical and physical structures.Recently it was observed that surface networks also exhibit many features that are typical for cluster algebra structures.Introduced only a few years ago by Fomin and Zelevinsky, the cluster algebra formalism is proved to be widely applicable in investigation of algebraic and geometric objects with symmetries often associated with important physical systems. Interplay between the two concepts will be instrumental in the study of combinatorial quantities and geometric phenomena of physical relevance and classical and quantum exactly solvable models.
本项目探讨经典组合学、现代Teichmueller空间理论、实代数几何和全正性,以及快速发展的簇代数理论之间的联系。特别是,pi一方面利用修饰的Teichmueller空间与测地线代数之间的联系,另一方面利用聚类代数理论来研究聚类代数的对偶正则基的结构。此外,他们利用聚类代数的观点研究了曲面上的有向网络,描述了网络的相容泊松-李结构和相应逆问题的解,并研究了相关的可积层次。后者将应用于研究高属曲线覆盖球面的双Hurwitz数之间的新关系,另一方面,分析一种新的双矩阵和多矩阵模型及其相关的双正交多项式,并将其应用于双色嵌入图的枚举问题。在随机过程理论、数学物理(包括二维重力)、电势理论特别是电网络理论以及其他领域中,利用曲面上的网络进行空间离散是一个重要的研究方向。表面网络的组合特性捕捉了复杂数学和物理结构的关键特征。最近观察到,表面网络也表现出许多典型的聚类代数结构的特征。在几年前由Fomin和Zelevinsky引入的聚类代数形式被证明广泛适用于研究具有对称性的代数和几何对象,这些对象通常与重要的物理系统有关。这两个概念之间的相互作用将有助于研究组合量和物理相关的几何现象以及经典和量子精确可解模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Gekhtman其他文献
Associahedra as moment polytopes
作为矩多面体的联面体
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Michael Gekhtman;Hugh Thomas - 通讯作者:
Hugh Thomas
Remarkable growth in matter radii of Ca isotopes across neutron magic number N = 28 via interaction cross section σI measurements
通过相互作用截面 σI 测量,跨中子幻数 N = 28 的 Ca 同位素物质半径显着增长
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael Gekhtman;Tomoki Nakanishi;Dylan Rupel;M.Tanaka - 通讯作者:
M.Tanaka
Michael Gekhtman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Gekhtman', 18)}}的其他基金
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100785 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
- 批准号:
1702054 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Quivers and Bipartite Graphs: Physics and Mathematics
箭袋和二分图:物理和数学
- 批准号:
1636087 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY
合作研究:泊松李群的簇结构和完全可积性
- 批准号:
1362801 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
- 批准号:
1101462 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmuller Spaces, Schubert Calculus, and Cluster Algebras
合作研究:Hurwitz 数、Teichmuller 空间、舒伯特微积分和簇代数
- 批准号:
0400484 - 财政年份:2004
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2216923 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2217021 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Constraining galaxy cluster merger dynamics with hydrodynamical simulations and novel multi-probe observations of 10 objects
合作研究:通过流体动力学模拟和对 10 个天体的新颖多探测器观测来约束星系团合并动力学
- 批准号:
2206082 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
- 批准号:
2326780 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2216519 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: The Virgo Cluster as a Testbed for the Study of Galaxy Formation and Evolution
合作研究:处女座星团作为星系形成和演化研究的试验台
- 批准号:
2206498 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Constraining galaxy cluster merger dynamics with hydrodynamical simulations and novel multi-probe observations of 10 objects
合作研究:通过流体动力学模拟和对 10 个天体的新颖多探测器观测来约束星系团合并动力学
- 批准号:
2206083 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: The Virgo Cluster as a Testbed for the Study of Galaxy Formation and Evolution
合作研究:处女座星团作为星系形成和演化研究的试验台
- 批准号:
2206328 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2216898 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: LoVoCCS: The Local Volume Complete Cluster Survey
合作研究:LoVoCCS:本地卷完整聚类调查
- 批准号:
2107870 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant