COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY
合作研究:泊松李群的簇结构和完全可积性
基本信息
- 批准号:1362801
- 负责人:
- 金额:$ 20.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project lies in Algebra and focuses on cluster algebras and Poisson-Lie groups. Since the invention of cluster algebras by Fomin and Zelevinsky in 2001, the mathematical community witnessed an explosion of interest in the subject due to the deep connections that were revealed between cluster algebras and a variety of branches of mathematics and theoretical physics ranging from quiver representations and algebraic geometry to string theory and statistical physics. The PIs will build upon their previous collaborations to continue a systematic study of multiple cluster structures in coordinate rings of Poisson-Lie groups and a number of other varieties of importance in algebraic geometry, representation theory and mathematical physics and study an interaction between corresponding cluster algebras. The proposed research is linked to the development of undergraduate and graduate courses and research projects. Synergistic activities are planned with the goal to promote inter-institutional and inter-departmental cooperation, to attract graduate students from underrepresented groups and with diverse educational backgrounds, and, through community outreach, to expose high school students to mathematical research. The PIs will continue their work on applications of Poisson Geometry to the theory of cluster algebras. The main goals of the project include construction and study of (i) exotic cluster structures on simple Lie groups compatible with Poisson-Lie brackets described by the Belavin-Drinfeld classification; (ii) generalized cluster structures on the Drinfeld double and the Poisson-Lie dual of a simple Poisson-Lie group; (iii) combinatorics and inverse problems for higher genus nets dual to quivers arising in cluster structures above; (iv) discrete integrable systems arising as sequences of cluster transformations and elementary transformations of higher genus networks; (v) continuous limits for directed networks with applications to moduli spaces of flat connections.
该项目属于代数领域,重点关注簇代数和泊松李群。自从 Fomin 和 Zelevinsky 于 2001 年发明簇代数以来,由于簇代数与数学和理论物理学的各个分支(从颤动表示和代数几何到弦理论和统计物理学)之间揭示出的深刻联系,数学界见证了对该学科的兴趣激增。 PI 将在之前的合作基础上继续系统研究泊松李群坐标环中的多簇结构以及代数几何、表示论和数学物理中的许多其他重要类型,并研究相应簇代数之间的相互作用。拟议的研究与本科生和研究生课程及研究项目的开发相关。协同活动的目的是促进机构间和部门间的合作,吸引来自弱势群体和具有不同教育背景的研究生,并通过社区外展,让高中生接触数学研究。 PI 将继续研究泊松几何在簇代数理论中的应用。该项目的主要目标包括构建和研究(i)与 Belavin-Drinfeld 分类描述的 Poisson-Lie 括号兼容的简单李群上的奇异簇结构; (ii) 简单泊松-李群的德林菲尔德对偶和泊松-李对偶的广义簇结构; (iii) 对于上述簇结构中出现的与颤动对偶的更高属网的组合和逆问题; (iv) 作为更高属网络的簇变换和初等变换序列而产生的离散可积系统; (v) 应用于平面连接模空间的有向网络的连续极限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Gekhtman其他文献
Associahedra as moment polytopes
作为矩多面体的联面体
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Michael Gekhtman;Hugh Thomas - 通讯作者:
Hugh Thomas
Remarkable growth in matter radii of Ca isotopes across neutron magic number N = 28 via interaction cross section σI measurements
通过相互作用截面 σI 测量,跨中子幻数 N = 28 的 Ca 同位素物质半径显着增长
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael Gekhtman;Tomoki Nakanishi;Dylan Rupel;M.Tanaka - 通讯作者:
M.Tanaka
Michael Gekhtman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Gekhtman', 18)}}的其他基金
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100785 - 财政年份:2021
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
- 批准号:
1702054 - 财政年份:2017
- 资助金额:
$ 20.97万 - 项目类别:
Continuing Grant
Quivers and Bipartite Graphs: Physics and Mathematics
箭袋和二分图:物理和数学
- 批准号:
1636087 - 财政年份:2016
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
- 批准号:
1101462 - 财政年份:2011
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: Cluster Algebras, Canonical Bases and Nets on Surfaces of Higher Genus
合作研究:簇代数、规范基和更高属面上的网络
- 批准号:
0801204 - 财政年份:2008
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmuller Spaces, Schubert Calculus, and Cluster Algebras
合作研究:Hurwitz 数、Teichmuller 空间、舒伯特微积分和簇代数
- 批准号:
0400484 - 财政年份:2004
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2216923 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2217021 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: Constraining galaxy cluster merger dynamics with hydrodynamical simulations and novel multi-probe observations of 10 objects
合作研究:通过流体动力学模拟和对 10 个天体的新颖多探测器观测来约束星系团合并动力学
- 批准号:
2206082 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: The Virgo Cluster as a Testbed for the Study of Galaxy Formation and Evolution
合作研究:处女座星团作为星系形成和演化研究的试验台
- 批准号:
2206498 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
- 批准号:
2326780 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2216519 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: Constraining galaxy cluster merger dynamics with hydrodynamical simulations and novel multi-probe observations of 10 objects
合作研究:通过流体动力学模拟和对 10 个天体的新颖多探测器观测来约束星系团合并动力学
- 批准号:
2206083 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: The Virgo Cluster as a Testbed for the Study of Galaxy Formation and Evolution
合作研究:处女座星团作为星系形成和演化研究的试验台
- 批准号:
2206328 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2216898 - 财政年份:2022
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant
Collaborative Research: LoVoCCS: The Local Volume Complete Cluster Survey
合作研究:LoVoCCS:本地卷完整聚类调查
- 批准号:
2107870 - 财政年份:2021
- 资助金额:
$ 20.97万 - 项目类别:
Standard Grant