Program on Quantization

量化计划

基本信息

  • 批准号:
    1114152
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-15 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

This project is to support graduate students to participate in a summer school and a conference on quantization, which will be held at the University of Notre Dame during May and June in 2011. Topics of the summer school and the conference are centered around quantizations, covering several different fields of mathematics, including mathematical physics, geometric quantization, deformation quantization, and quantum analogues of classical objects. These topics are closely related to recent developments in functional analysis, representation theory of Lie groups, and spectral geometry. The summer school is geared toward undergraduate students and graduate students followed by a conference. The summer school consists of two weeks of program with the first week aimed at undergraduate students and the second week geared to graduate students. The summer school and the conference will promote research activities in areas of mathematics related to quantization. The organizers have selected lecturers with a broad array of interests and backgrounds, including some physicists. The summer school and conference will give graduate students access to a wide array of current research activity in quantization, and give the students an opportunity to interact with prominent researchers. A public lecture by a physicist engaged in the Large Hadron Collider project in Europe will help enhance public awareness of science, and also give mathematicians the opportunity to interact with an experimental high energy physicist. The undergraduate summer school will expose top undergraduates to important ideas in mathematical physics, and encourage them to learn more about physics. The volume of proceedings of the conference will serve as a resource for students and researchers interested in learning about quantization. Quantization is an important topic in mathematics and physics. From the physics point of view, methods of quantization are procedures for building models for quantum mechanical systems from analogous and more intuitive classical mechanical systems, which provide strikingly precise experimental predictions. Much of the development of theoretical physics in the 20th century may be regarded as the process of refining quantization to give improved experimental predictions, and the search for a unified field theory is an attempt to quantize general relativity in a manner compatible with existing quantum theory. On the mathematics side, problems related to quantization and quantum mechanics provided a strong motivation for the development of functional analysis, the representation theory of Lie groups, and spectral geometry. More recent developments with much current activity include geometric quantization, deformation quantization, and quantum analogues of various classical objects. The Program on Quantization will inaugurate a new Center for Mathematics at Notre Dame. It will combine two week-long summer schools, one aimed at advanced undergraduates and one aimed at graduate students with a conference devoted to the most recent advances in the area. The invited speakers at the conference are among the world's leading experts in the mathematics of quantization.
该项目旨在支持研究生参加将于2011年5月和6月在圣母大学举行的暑期学校和量化问题会议。暑期学校和会议的主题围绕量子化,涵盖数学的几个不同领域,包括数学物理,几何量子化,变形量子化和经典物体的量子类似物。这些主题与泛函分析、李群表示论和谱几何的最新发展密切相关。暑期学校面向本科生和研究生,随后举行会议。 暑期学校包括两周的课程,第一周针对本科生,第二周面向研究生。暑期学校和会议将促进与量化有关的数学领域的研究活动。组织者选择了具有广泛兴趣和背景的讲师,其中包括一些物理学家。暑期学校和会议将让研究生获得广泛的当前研究活动的量化,并让学生有机会与杰出的研究人员互动。一位在欧洲从事大型强子对撞机项目的物理学家的公开讲座将有助于提高公众对科学的认识,也让数学家有机会与一位实验高能物理学家进行互动。本科生暑期学校将让优秀的本科生接触数学物理的重要思想,并鼓励他们学习更多的物理知识。会议记录的卷将作为有兴趣学习量化的学生和研究人员的资源。量子化是数学和物理学中的一个重要课题。从物理学的角度来看,量子化方法是从类似的和更直观的经典力学系统建立量子力学系统模型的过程,它提供了惊人的精确实验预测。世纪理论物理学的大部分发展可以被看作是改进量子化以给出更好的实验预言的过程,而对统一场论的探索是试图以与现有量子理论兼容的方式来解释广义相对论。在数学方面,与量子化和量子力学相关的问题为泛函分析、李群表示论和谱几何的发展提供了强大的动力。最近的发展与许多当前的活动包括几何量子化,变形量子化,和各种经典对象的量子类似物。该计划的量化将开创一个新的数学中心在圣母院。它将结合联合收割机两个为期一周的暑期学校,一个针对高级本科生,一个针对研究生,一个专门讨论该领域最新进展的会议。会议邀请的演讲者都是世界领先的量化数学专家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Gekhtman其他文献

Associahedra as moment polytopes
作为矩多面体的联面体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Hugh Thomas
  • 通讯作者:
    Hugh Thomas
Remarkable growth in matter radii of Ca isotopes across neutron magic number N = 28 via interaction cross section σI measurements
通过相互作用截面 σI 测量,跨中子幻数 N = 28 的 Ca 同位素物质半径显着增长
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Tomoki Nakanishi;Dylan Rupel;M.Tanaka
  • 通讯作者:
    M.Tanaka

Michael Gekhtman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Gekhtman', 18)}}的其他基金

Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Poisson Geometry Conference
泊松几何会议
  • 批准号:
    1711110
  • 财政年份:
    2017
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
  • 批准号:
    1702054
  • 财政年份:
    2017
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Quivers and Bipartite Graphs: Physics and Mathematics
箭袋和二分图:物理和数学
  • 批准号:
    1636087
  • 财政年份:
    2016
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY
合作研究:泊松李群的簇结构和完全可积性
  • 批准号:
    1362801
  • 财政年份:
    2014
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
  • 批准号:
    1101462
  • 财政年份:
    2011
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Collaborative Research: Cluster Algebras, Canonical Bases and Nets on Surfaces of Higher Genus
合作研究:簇代数、规范基和更高属面上的网络
  • 批准号:
    0801204
  • 财政年份:
    2008
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmuller Spaces, Schubert Calculus, and Cluster Algebras
合作研究:Hurwitz 数、Teichmuller 空间、舒伯特微积分和簇代数
  • 批准号:
    0400484
  • 财政年份:
    2004
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant

相似海外基金

L-functions via geometric quantization
通过几何量化的 L 函数
  • 批准号:
    2302346
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
CAREER: Verified AI in Cyber-Physical Systems through Input Quantization
职业:通过输入量化验证网络物理系统中的人工智能
  • 批准号:
    2237229
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Symplectic groupoids and quantization of Poisson manifolds
辛群群和泊松流形的量化
  • 批准号:
    2303586
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Generalization and quantization of momentum maps to Lie algebroids
动量映射到李代数体的概括和量化
  • 批准号:
    22K03323
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physical Mathematics: String Theory, Quantization and Geometry
物理数学:弦理论、量化和几何
  • 批准号:
    SAPIN-2018-00029
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Space-Time Quantization and Dark Matter
时空量子化和暗物质
  • 批准号:
    2207663
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Complex Lagrangians, Integrable Systems, and Quantization
FRG:协作研究:复杂拉格朗日量、可积系统和量化
  • 批准号:
    2152257
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Complex Lagrangians, Integrable Systems, and Quantization
FRG:协作研究:复杂拉格朗日量、可积系统和量化
  • 批准号:
    2152107
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Moduli and quantization of Poisson varieties
泊松簇的模和量化
  • 批准号:
    RGPIN-2020-05191
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric quantization and metrics with special curvature properties
几何量化和具有特殊曲率特性的度量
  • 批准号:
    RGPIN-2020-04683
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了