Heat Kernel Analysis and Zeta Functions on Quotients of Symmetric Spaces
对称空间商的热核分析和 Zeta 函数
基本信息
- 批准号:0071363
- 负责人:
- 金额:$ 9.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for proposal of JorgensonJay Jorgenson proposes to continue ongoing research with his co-authors into applications of heat kernel analysis to number theory. Jorgenson and Serge Lang will study spectral theory on finite volume quotients of symmetric spaces using generalizations of Eisenstein series defined using heat kernels, as opposed to classical Eisenstein series which are defined using automorphic forms. Jorgenson and Lang plan to investigate questions involving analytic continuation, functional equations, and special values of their heat Eisenstein series. Upon completion of this component of their work, Jorgenson and Lang then will investigate applications of heat Eisenstein series to Weyl's law as well as to constructions of zeta functions which will yield higher rank generalizations of Selberg zeta functions. In collaboration with Jurg Kramer, Jorgenson will study analytic aspects of Arakelov theory. In recent work, Jorgenson and Kramer study bounds on special values of Selberg's zeta function and asymptotic bounds through covers. Jorgenson and Kramer propose to extend these results to study asymptotic behavior of Faltings's delta function through covers, thus extending results first obtained by Jorgenson in his 1989 Stanford Ph.D. thesis. In collaboration with Jozek Dodziuk, Jorgenson plans to use Lang's definition of degenerating number fields (from Lang's 1971 Inventiones paper) to study spectral theory on the corresponding sequence of degenerating Hilbert modular varieties. The proposed methods to employ involve generalizations of research previously obtained by Jorgenson with Dodziuk and with Huntley and Lundelius. As time permits, Jorgenson plans to study proposed additional research problems with Carol Fan, Edward Jenvey and Peter Grabner.Classically, the heat kernel is a function defined for positive values of time t and points x and y in a domain D, and the heat kernel measures the amount of heat at point x in D at time t when a unit burst of heat is introduced at point y in D at time zero. Although the origin of the heat kernel lies in physics, the mathematics surrounding the function known as the heat kernel manifests itself in virtually every area of pure and applied mathematics. In addition, the heat kernel is present in the theoretical foundations of many fields of statistics as well as econometrics and, more specifically, financial mathematics. Part of the research undertaken by Jay Jorgenson and his collaborators involves understanding various ways in which the heat kernel appears in one area of mathematics and then translate the questions, theorems and techniques to other areas of mathematics, statistics, and economics. Going beyond mathematical research, Jay Jorgenson proposes to extend his research endeavors to incluce applications of heat kernels to practical problems of financial mathematics and economics, which naturally includes developing ways in which one can program constructions of heat kernels in order to obtain precise, numerical evaluations.
JorgensonJay Jorgenson的提案摘要Jorgenson建议继续与他的合著者进行研究,将热核分析应用于数论。 Jorgenson和Serge Lang将研究对称空间的有限体积导数的谱理论,使用热内核定义的Eisenstein级数的推广,而不是使用自守形式定义的经典Eisenstein级数。 乔根森和朗计划调查的问题,涉及解析延续,功能方程,和特殊价值观的热爱森斯坦系列。 在完成这一部分的工作,乔根森和郎然后将调查应用热爱森斯坦系列外尔定律以及建设的zeta函数将产生更高的排名概括塞尔伯格zeta函数。 与Jurg克雷默合作,乔根森将研究阿拉克洛夫理论的分析方面。 在最近的工作中,Jorgenson和克雷默研究了Selberg的zeta函数的特殊值的界和通过覆盖的渐近界。 Jorgenson和克雷默建议将这些结果推广到研究Faltings δ函数通过覆盖的渐近行为,从而推广了Jorgenson在1989年斯坦福大学博士学位论文中首次获得的结果。论文 在与Jozek Dodziuk的合作中,Jorgenson计划使用Lang的退化数域定义(来自Lang 1971年的Inventiones论文)来研究退化希尔伯特模簇的相应序列的谱理论。 建议采用的方法包括对乔根森与多齐乌克以及亨特利和伦德利乌斯以前所做研究的概括。 在时间允许的情况下,乔根森计划与Carol Fan、Edward Jenvey和Peter Grabner一起研究提出的其他研究问题。经典上,热核是定义为时间t和区域D中的点x和y的正值的函数,热核测量当在时间零时在D中的点y处引入单位热爆发时在时间t处D中的点x处的热量。 虽然热核的起源在于物理学,但围绕着被称为热核的函数的数学实际上在纯数学和应用数学的每一个领域都表现出来。此外,热核存在于许多统计学和计量经济学领域的理论基础中,更具体地说,是金融数学。 Jay Jorgenson和他的合作者进行的部分研究涉及理解热核在数学的一个领域中出现的各种方式,然后将问题,定理和技术翻译到数学,统计学和经济学的其他领域。 超越数学研究,Jay Jorgenson提出将他的研究努力扩展到将热核应用于金融数学和经济学的实际问题,其中自然包括开发方法,可以对热核的构造进行编程,以获得精确的数值评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay Jorgenson其他文献
Extension of analytic number theory and the theory of regularized harmonic series from Dirichlet series to Bessel series
- DOI:
10.1007/bf01445243 - 发表时间:
1996-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Jay Jorgenson;Serge Lang - 通讯作者:
Serge Lang
Enriques Surfaces, Analytic Discriminants, and Borcherds's Φ Function
- DOI:
10.1007/s002200050267 - 发表时间:
1998-02-01 - 期刊:
- 影响因子:2.600
- 作者:
Jay Jorgenson;Andrey Todorov - 通讯作者:
Andrey Todorov
Jay Jorgenson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay Jorgenson', 18)}}的其他基金
Building Bridges: 3rd EU/US Summer School and automorphic forms workshop
搭建桥梁:第三届欧盟/美国暑期学校和自守形式研讨会
- 批准号:
1630217 - 财政年份:2016
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Heat kernel methods applied to zeta functions of Ihara, Rankin-Selberg, and Selberg
应用于 Ihara、Rankin-Selberg 和 Selberg zeta 函数的热核方法
- 批准号:
1104115 - 财政年份:2011
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Applications of Heat Kernel Techniques to Zeta Functions of Quotients of Symmetric Spaces and of Graphs
热核技术在对称空间商和图 Zeta 函数中的应用
- 批准号:
0802626 - 财政年份:2008
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Analytic questions motivated by L functions, Eisenstein series, automorphic forms, and trace formulae
由 L 函数、爱森斯坦级数、自同构形式和迹公式引发的分析问题
- 批准号:
0503669 - 财政年份:2005
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Heat Kernal Analysis and Analytic Number Theory on Symmetric Spaces, Calabi-Yau Varieties and Moduli Spaces
对称空间、Calabi-Yau簇和模空间的热核分析和解析数论
- 批准号:
9796336 - 财政年份:1997
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Heat Kernal Analysis and Analytic Number Theory on Symmetric Spaces, Calabi-Yau Varieties and Moduli Spaces
对称空间、Calabi-Yau簇和模空间的热核分析和解析数论
- 批准号:
9622535 - 财政年份:1996
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularized Products, Heat Kernal Analysis and Analytic Number Theory
数学科学:正则化积、热核分析和解析数论
- 批准号:
9307023 - 财政年份:1993
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8905661 - 财政年份:1989
- 资助金额:
$ 9.3万 - 项目类别:
Fellowship Award
相似国自然基金
多kernel环境下通用图形处理器缓存子系统性能优化研究
- 批准号:62162002
- 批准年份:2021
- 资助金额:36 万元
- 项目类别:地区科学基金项目
玉米Edk1(Early delayed kernel 1)基因的克隆及其在胚乳早期发育中的功能研究
- 批准号:31871625
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Kernel算子的仿射非线性系统故障诊断与容错控制研究及应用
- 批准号:61473004
- 批准年份:2014
- 资助金额:83.0 万元
- 项目类别:面上项目
非向量型Kernel学习机及其对动态形状模板的应用
- 批准号:60373090
- 批准年份:2003
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
- 批准号:
23K13013 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Whole-Kernel Analysis Against Developer- and Compiler-Introduced Errors
职业:针对开发人员和编译器引入的错误进行全内核分析
- 批准号:
2045478 - 财政年份:2021
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Analysis on reproducing kernel Hilbert spaces
再生核希尔伯特空间分析
- 批准号:
20K14334 - 财政年份:2020
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Kernel principal component analysis in high dimension, low sample size and its applications
高维、小样本核主成分分析及其应用
- 批准号:
19J10175 - 财政年份:2019
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stochastic Differential Equations, Heat Kernel Analysis, and Random Matrix Theory
随机微分方程、热核分析和随机矩阵理论
- 批准号:
1800733 - 财政年份:2018
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Improvement of dynamicsl scaling analysis by means of the kernel method and new development for the nonequilibrium relaxation method
核方法对动力学标度分析的改进及非平衡弛豫方法的新进展
- 批准号:
15K05205 - 财政年份:2015
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Kernel Methods for Data Analysis in Dynamical Systems: Applications to Dimension Reduction and Prediction in Atmospheric and Oceanic Dynamics
动力系统数据分析的新核方法:在大气和海洋动力学中的降维和预测应用
- 批准号:
1521775 - 财政年份:2015
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Analysis and Developments of Kernel Adaptive Filtering Algorithm
核自适应滤波算法的分析与发展
- 批准号:
15K06081 - 财政年份:2015
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Frame-Based Kernel Analysis and Algorithms for Fast Recovery of Erasures and Multiplexing
用于快速恢复擦除和复用的基于帧的内核分析和算法
- 批准号:
1403400 - 财政年份:2014
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Investigations in Multiple Kernel Learning, in particular the rigorous analysis of algorithms when learning to combine infinitely many kernels
多核学习的研究,特别是学习组合无限多个核时算法的严格分析
- 批准号:
443151-2013 - 财政年份:2013
- 资助金额:
$ 9.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's