Collaborative Research: Online Monitoring of High-Dimensional Streaming Data Using Adaptive Order Shrinkage

合作研究:利用自适应阶次收缩在线监测高维流数据

基本信息

  • 批准号:
    1362876
  • 负责人:
  • 金额:
    $ 22.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Modern manufacturing machines and systems incorporate sensors to monitor process conditions, but the massive amount of data coming from them is often difficult to interpret. This project investigates a new method for extracting useful information from such data. The method potentially can reduce computational cost and improve confidence in the predictions that are made by adapting statistical process control (SPC) methodologies specifically for online monitoring of high-dimensional streaming data. While this work focuses on monitoring the Chemical Mechanical Planarization (CMP) process, the methods can also be applied to other manufacturing applications, such as rolling, forging and casting processes. The impacts of the methodologies will go beyond manufacturing, including but not limited to disease surveillance in epidemiology, network traffic control, intrusion detection and surveillance video. The success of the implementation of the research methods will not only generate significant economic impacts to the nation, but also prevent consequent damages through quick detection of abnormal events. In addition, the education plan will make broad impacts on the workforce training through curriculum and lab developments, teaching innovations, and other outreach activities.The objective of this collaborative research is to develop scalable and adaptive methodologies for online monitoring of high-dimensional streaming data. In particular, three interrelated research tasks are planned in the methodology development: (1) Efficient scalable schemes via adaptive order shrinkage with full observations, and the key novel idea is to first monitor each data stream locally through some classical, computationally simple, but efficient local detection statistics, and then combine these local procedures ?smartly? to produce a single global monitoring scheme; (2) Adaptive sampling strategies over the spatial domain, rather than the conventional time domain, such that the most informative data streams are actively selected/sampled to maximize the sensitivity and effectiveness for change detection with consideration of resources constraints; and, (3) The engineering knowledge enhanced monitoring scheme that integrates domain knowledge with local detection statistics development and adaptive sampling strategy to further improve performance. The success of this research will advance the state of the art in statistical process control and contribute to the science base of quality improvement for manufacturing systems.
现代制造机器和系统采用传感器来监控过程条件,但来自它们的大量数据往往难以解释。 该项目研究一种从此类数据中提取有用信息的新方法。 该方法潜在地可以降低计算成本并提高预测的置信度,所述预测是通过调整统计过程控制(SPC)方法专门用于高维流数据的在线监测而做出的。虽然这项工作的重点是监测化学机械平坦化(CMP)过程,但这些方法也可以应用于其他制造应用,如轧制,锻造和铸造工艺。这些方法的影响将超越制造业,包括但不限于流行病学中的疾病监测、网络流量控制、入侵检测和监控视频。研究方法的成功实施不仅会对国家产生重大的经济影响,而且还可以通过快速检测异常事件来防止随之而来的损害。此外,教育计划将通过课程和实验室开发,教学创新和其他推广活动对劳动力培训产生广泛影响。这项合作研究的目标是开发可扩展和自适应的方法,用于在线监测高维流数据。特别是,三个相互关联的研究任务,计划在方法的发展:(1)有效的可扩展计划,通过自适应订单收缩与充分的意见,和关键的新想法是首先监测每个数据流本地通过一些经典的,计算简单,但有效的本地检测统计,然后联合收割机这些本地程序?聪明地?(2)在空间域而不是传统的时域上的自适应采样策略,使得在考虑资源约束的情况下主动地选择/采样信息量最大的数据流以最大化变化检测的灵敏度和有效性;(3)工程知识增强的监测方案,将领域知识与局部检测统计开发和自适应采样策略相结合,以进一步提高性能。本研究的成功将推动统计过程控制的发展,并为制造系统质量改进提供科学基础。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved performance properties of the CISPRT algorithm for distributed sequential detection
改进了用于分布式顺序检测的 CISPRT 算法的性能特性
  • DOI:
    10.1016/j.sigpro.2020.107573
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Liu, Kun;Mei, Yajun
  • 通讯作者:
    Mei, Yajun
Tandem-width sequential confidence intervals for a Bernoulli proportion
伯努利比例的串联宽度连续置信区间
  • DOI:
    10.1080/07474946.2019.1611315
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yaacoub, Tony;Goldsman, David;Mei, Yajun;Moustakides, George V.
  • 通讯作者:
    Moustakides, George V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yajun Mei其他文献

Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size
统计学家的私人序贯假设检验:隐私、错误率和样本量
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wanrong Zhang;Yajun Mei;Rachel Cummings
  • 通讯作者:
    Rachel Cummings
A Personalized Threshold Method via Boosting for Sepsis Screening
通过增强脓毒症筛查的个性化阈值方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Feng;Paul M. Griffin;S. Kethireddy;Yajun Mei
  • 通讯作者:
    Yajun Mei
Jugular Venous Catheterization is Not Associated with Increased Complications in Patients with Aneurysmal Subarachnoid Hemorrhage
  • DOI:
    10.1007/s12028-024-02173-1
  • 发表时间:
    2024-11-26
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Feras Akbik;Yuyang Shi;Steven Philips;Cederic Pimentel-Farias;Jonathan A. Grossberg;Brian M. Howard;Frank Tong;C. Michael Cawley;Owen B. Samuels;Yajun Mei;Ofer Sadan
  • 通讯作者:
    Ofer Sadan
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage–a Retrospective Propensity-Based Analysis
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛——基于倾向的回顾性分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;S. Kathleen;Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;William;Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels
  • 通讯作者:
    O. Samuels
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage: a Retrospective Analysis and Propensity-Based Comparison
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛:回顾性分析和基于倾向的比较
  • DOI:
    10.1101/2020.08.31.20185181
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;K. Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;W. Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels
  • 通讯作者:
    O. Samuels

Yajun Mei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yajun Mei', 18)}}的其他基金

Active Sequential Change-Point Analysis of Multi-Stream Data
多流数据的主动顺序变点分析
  • 批准号:
    2015405
  • 财政年份:
    2020
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Adaptive and Rapid Spatial-Temporal Threat Detection over Networks
ATD:协作研究:网络上的自适应快速时空威胁检测
  • 批准号:
    1830344
  • 财政年份:
    2018
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Continuing Grant
Scaling Summaries in Multiscale Domains with Applications
通过应用程序扩展多尺度域中的摘要
  • 批准号:
    1613258
  • 财政年份:
    2016
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Achieving Spatial Adaptation via Inconstant Penalization: Theory and Computational Strategies
通过不恒定惩罚实现空间适应:理论和计算策略
  • 批准号:
    1106940
  • 财政年份:
    2011
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
CAREER: Streaming Data Analysis in Sensor Networks
职业:传感器网络中的流数据分析
  • 批准号:
    0954704
  • 财政年份:
    2010
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Continuing Grant
Fundamental Bounds on Decentralized Adaptive Detection in Hidden Markov Models
隐马尔可夫模型中分散自适应检测的基本界限
  • 批准号:
    0830472
  • 财政年份:
    2008
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312835
  • 财政年份:
    2023
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
  • 批准号:
    2226901
  • 财政年份:
    2023
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding and Combatting Impersonation Attacks and Data Leakage in Online Advertising
协作研究:SaTC:核心:媒介:理解和打击在线广告中的冒充攻击和数据泄露
  • 批准号:
    2247516
  • 财政年份:
    2023
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enhancing Radar Meteorology Instruction with an Open, Flexible, Online Course
合作研究:通过开放、灵活的在线课程加强雷达气象学教学
  • 批准号:
    2303654
  • 财政年份:
    2023
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
  • 批准号:
    2409880
  • 财政年份:
    2023
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 22.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了