ATD: Collaborative Research: Adaptive and Rapid Spatial-Temporal Threat Detection over Networks

ATD:协作研究:网络上的自适应快速时空威胁检测

基本信息

  • 批准号:
    1830344
  • 负责人:
  • 金额:
    $ 11.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop innovative machine learning and statistical algorithms for detecting, preventing, and responding to threats over networks. Two concrete applications are monitoring the threat of multi-antibiotic-resistant (MDR) gonorrhea from a network of clinics across the United States and monitoring HIV transmission in clusters of patients. The research has impact in many other practical applications, including biosurveillance, engineering, homeland security, finance, and public health, where large-scale spatial-temporal data streams are collected with the aim of rapid detection and prevention of threats. The research aims to develop crucial scalable algorithms and methods to effectively and efficiently monitor, analyze, and optimize responses in these situations. In addition, the project will integrate research and education by infusing the research findings into the curriculum and by involving Ph.D. students in research. This project aims to develop innovative algorithms for rapid threat detection by combining spatial-temporal models, ordinary differential equation (ODE) models with change-point detection, and multi-armed bandit and ensemble methods when monitoring large-scale spatial-temporal data over networks. In particular, efficient scalable algorithms are developed in three interrelated research tasks, including (1) rapid detection of threats by combining a "background + anomaly + noise" decomposition framework with sequential change-point detection; (2) predictive analytics of threats by applying multi-armed bandit algorithms and adaptive sampling in the changing environments to assess increasing risks at the population level; and (3) prescriptive analytics of threats by developing nested ensemble models based on calibrated ODE and data-driven spatial-temporal models so as to better assess the effects of prevention/intervention actions. Results of the project are expected to significantly advance the state of the art in spatial-temporal models, online learning, streaming data analysis, and large-scale inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发创新的机器学习和统计算法,用于检测、预防和响应网络威胁。两个具体的应用是监测来自美国各地诊所网络的多重耐药(MDR)淋病的威胁,以及监测艾滋病病毒在患者群中的传播。这项研究在许多其他实际应用中都有影响,包括生物监控、工程、国土安全、金融和公共卫生,在这些应用中,收集大规模时空数据流的目的是快速检测和预防威胁。这项研究旨在开发关键的可扩展算法和方法,以有效和高效地监控、分析和优化在这些情况下的响应。此外,该项目将通过将研究成果注入课程并通过让博士生参与研究来整合研究和教育。该项目旨在开发创新的算法,通过将时空模型、常微分方程(ODE)模型与变点检测相结合,以及在网络上监控大规模时空数据时的多臂强盗和集成方法来实现快速威胁检测。具体而言,在三个相互关联的研究任务中开发了高效的可扩展算法,包括:(1)通过将“背景+异常+噪声”分解框架与顺序变化点检测相结合来快速检测威胁;(2)通过在变化的环境中应用多臂强盗算法和自适应采样来对威胁进行预测性分析,以评估人口水平上不断增加的风险;以及(3)通过基于校准的和数据驱动的时空模型开发嵌套的集成模型来对威胁进行规范分析,以便更好地评估预防/干预措施的效果。该项目的成果预计将显著推进时空模型、在线学习、流数据分析和大规模推理方面的最先进水平。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid detection of hot-spots via tensor decomposition with applications to crime rate data
  • DOI:
    10.1080/02664763.2021.1874892
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Yujie Zhao;Hao Yan;S. Holte;Y. Mei
  • 通讯作者:
    Yujie Zhao;Hao Yan;S. Holte;Y. Mei
Optimum Multi-Stream Sequential Change-Point Detection With Sampling Control
带采样控制的最佳多流顺序变化点检测
  • DOI:
    10.1109/tit.2021.3074961
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xu, Qunzhi;Mei, Yajun;Moustakides, George V.
  • 通讯作者:
    Moustakides, George V.
Optimal Stopping for Interval Estimation in Bernoulli Trials
伯努利试验中间隔估计的最佳停止
  • DOI:
    10.1109/tit.2018.2885405
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yaacoub, Tony;Moustakides, George V.;Mei, Yajun
  • 通讯作者:
    Mei, Yajun
Multi-Stream Quickest Detection with Unknown Post-Change Parameters Under Sampling Control
采样控制下未知变化后参数的多流最快检测
Single and Multiple Change-Point Detection with Differential Privacy
具有差分隐私的单个和多个变化点检测
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Zhang, Wanrong;Krehbiel, Sara;Tuo, Rei;Mei, Yajun;Cummings, Rachel
  • 通讯作者:
    Cummings, Rachel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yajun Mei其他文献

Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size
统计学家的私人序贯假设检验:隐私、错误率和样本量
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wanrong Zhang;Yajun Mei;Rachel Cummings
  • 通讯作者:
    Rachel Cummings
A Personalized Threshold Method via Boosting for Sepsis Screening
通过增强脓毒症筛查的个性化阈值方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Feng;Paul M. Griffin;S. Kethireddy;Yajun Mei
  • 通讯作者:
    Yajun Mei
Jugular Venous Catheterization is Not Associated with Increased Complications in Patients with Aneurysmal Subarachnoid Hemorrhage
  • DOI:
    10.1007/s12028-024-02173-1
  • 发表时间:
    2024-11-26
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Feras Akbik;Yuyang Shi;Steven Philips;Cederic Pimentel-Farias;Jonathan A. Grossberg;Brian M. Howard;Frank Tong;C. Michael Cawley;Owen B. Samuels;Yajun Mei;Ofer Sadan
  • 通讯作者:
    Ofer Sadan
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage–a Retrospective Propensity-Based Analysis
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛——基于倾向的回顾性分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;S. Kathleen;Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;William;Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels
  • 通讯作者:
    O. Samuels
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage: a Retrospective Analysis and Propensity-Based Comparison
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛:回顾性分析和基于倾向的比较
  • DOI:
    10.1101/2020.08.31.20185181
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;K. Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;W. Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels
  • 通讯作者:
    O. Samuels

Yajun Mei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yajun Mei', 18)}}的其他基金

Active Sequential Change-Point Analysis of Multi-Stream Data
多流数据的主动顺序变点分析
  • 批准号:
    2015405
  • 财政年份:
    2020
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Scaling Summaries in Multiscale Domains with Applications
通过应用程序扩展多尺度域中的摘要
  • 批准号:
    1613258
  • 财政年份:
    2016
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Online Monitoring of High-Dimensional Streaming Data Using Adaptive Order Shrinkage
合作研究:利用自适应阶次收缩在线监测高维流数据
  • 批准号:
    1362876
  • 财政年份:
    2014
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Achieving Spatial Adaptation via Inconstant Penalization: Theory and Computational Strategies
通过不恒定惩罚实现空间适应:理论和计算策略
  • 批准号:
    1106940
  • 财政年份:
    2011
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
CAREER: Streaming Data Analysis in Sensor Networks
职业:传感器网络中的流数据分析
  • 批准号:
    0954704
  • 财政年份:
    2010
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Continuing Grant
Fundamental Bounds on Decentralized Adaptive Detection in Hidden Markov Models
隐马尔可夫模型中分散自适应检测的基本界限
  • 批准号:
    0830472
  • 财政年份:
    2008
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 11.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了