CAREER: Streaming Data Analysis in Sensor Networks
职业:传感器网络中的流数据分析
基本信息
- 批准号:0954704
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims to offer statistical foundation and a host of efficient scalable methodologies for streaming data analysis in sensor networks. In many applications, sensor networks are deployed to online monitoring of changing environments over time and space, with a goal of early detection of some particular trigger events that can cause significant damage. However, the nature of streaming data from distributed, diverse sources and the constrained network resources (on communication, computing, costs, privacy of raw data, etc.) pose significant challenges, which require the development of new statistical tools, methods and theories. In this project, the investigator proposes a novel general framework for monitoring sensor networks in which a trigger event may affect different sensors or data streams differently. Some specific research topics include pure (consensus or parallel) detection and inference after detection, under different scenarios, depending on the models for sensor observations and the design requirements of sensor protocols. In addition, the research will integrate research and education by infusing the research findings into the curriculum, by organizing seminars and workshops, and by advising graduate and undergraduate students.Senor networks have broad real-world applications, including but not limited to health and environmental monitoring, biomedical signal processing, wireless communication, intrusion detection in computer networks, and biosurveillance. On the one hand, this research project will offer crucial statistical tools to effectively and efficiently monitor and analyze dynamic data streams in these sensor network applications. On the other hand, it also has a frustrating yet profound implication in these applications: Faced with the limitations implied by the (asymptotic) optimality theories of the proposed research, practitioners and researchers may need to constantly look for better data sources to achieve desired system performance in their specific applications rather than relying on an improved methodology for existing data sources.
本研究旨在为传感器网络中流数据分析提供统计基础和一系列高效可扩展的方法。在许多应用中,传感器网络被部署用于在线监测随时间和空间变化的环境,目的是及早发现一些可能造成重大破坏的特定触发事件。然而,来自分布式、不同来源的流数据的性质以及受限的网络资源(在通信、计算、成本、原始数据的隐私等方面)提出了重大挑战,这就需要开发新的统计工具、方法和理论。在这个项目中,研究人员提出了一个新颖的通用框架来监控传感器网络,其中触发事件可能会对不同的传感器或数据流产生不同的影响。一些具体的研究课题包括纯(一致或并行)检测和检测后推理,在不同的场景下,取决于传感器观测的模型和传感器协议的设计要求。此外,这项研究将把研究成果融入课程,通过组织研讨会和研讨会,并通过为研究生和本科生提供建议,将研究和教育结合在一起。传感器网络在现实世界中有广泛的应用,包括但不限于健康和环境监测、生物医学信号处理、无线通信、计算机网络中的入侵检测和生物监控。一方面,该研究项目将提供关键的统计工具,以有效和高效地监测和分析这些传感器网络应用中的动态数据流。另一方面,它在这些应用中也有令人沮丧但深刻的影响:面对拟议研究的(渐近)最优性理论所隐含的限制,从业者和研究人员可能需要不断寻找更好的数据源,以在其特定应用中实现所需的系统性能,而不是依赖于现有数据源的改进方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yajun Mei其他文献
Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size
统计学家的私人序贯假设检验:隐私、错误率和样本量
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wanrong Zhang;Yajun Mei;Rachel Cummings - 通讯作者:
Rachel Cummings
A Personalized Threshold Method via Boosting for Sepsis Screening
通过增强脓毒症筛查的个性化阈值方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chen Feng;Paul M. Griffin;S. Kethireddy;Yajun Mei - 通讯作者:
Yajun Mei
Jugular Venous Catheterization is Not Associated with Increased Complications in Patients with Aneurysmal Subarachnoid Hemorrhage
- DOI:
10.1007/s12028-024-02173-1 - 发表时间:
2024-11-26 - 期刊:
- 影响因子:3.600
- 作者:
Feras Akbik;Yuyang Shi;Steven Philips;Cederic Pimentel-Farias;Jonathan A. Grossberg;Brian M. Howard;Frank Tong;C. Michael Cawley;Owen B. Samuels;Yajun Mei;Ofer Sadan - 通讯作者:
Ofer Sadan
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage–a Retrospective Propensity-Based Analysis
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛——基于倾向的回顾性分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;S. Kathleen;Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;William;Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels - 通讯作者:
O. Samuels
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage: a Retrospective Analysis and Propensity-Based Comparison
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛:回顾性分析和基于倾向的比较
- DOI:
10.1101/2020.08.31.20185181 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;K. Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;W. Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels - 通讯作者:
O. Samuels
Yajun Mei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yajun Mei', 18)}}的其他基金
Active Sequential Change-Point Analysis of Multi-Stream Data
多流数据的主动顺序变点分析
- 批准号:
2015405 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Adaptive and Rapid Spatial-Temporal Threat Detection over Networks
ATD:协作研究:网络上的自适应快速时空威胁检测
- 批准号:
1830344 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Scaling Summaries in Multiscale Domains with Applications
通过应用程序扩展多尺度域中的摘要
- 批准号:
1613258 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Online Monitoring of High-Dimensional Streaming Data Using Adaptive Order Shrinkage
合作研究:利用自适应阶次收缩在线监测高维流数据
- 批准号:
1362876 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Achieving Spatial Adaptation via Inconstant Penalization: Theory and Computational Strategies
通过不恒定惩罚实现空间适应:理论和计算策略
- 批准号:
1106940 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Fundamental Bounds on Decentralized Adaptive Detection in Hidden Markov Models
隐马尔可夫模型中分散自适应检测的基本界限
- 批准号:
0830472 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Data Structures and Streaming Algorithms
职业:数据结构和流算法
- 批准号:
2339942 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Estimating fast and slow: end-to-end streaming data assimilation with adaptive fidelity
估计快和慢:具有自适应保真度的端到端流数据同化
- 批准号:
23K11140 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-guided Control: Fundamental Limits in Presence of Nonlinearities, Streaming Data, and Networks
数据引导控制:非线性、流数据和网络存在的基本限制
- 批准号:
2149470 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Improving fault-tolerance mechanisms in distributed data streaming systems
改进分布式数据流系统中的容错机制
- 批准号:
575699-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
- 批准号:
2225950 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Learning Transparent models from Data Driven algorithms to Enhance streaming data analysis
从数据驱动算法中学习透明模型以增强流数据分析
- 批准号:
2748733 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Development of a Real-Time Edge AI Platform for SmartCone's vision and data streaming-based IoT applications
为 SmartCone 的视觉和基于数据流的物联网应用开发实时边缘人工智能平台
- 批准号:
556303-2020 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Applied Research and Development Grants - Level 2
Triggered bandits within streaming data settings.
在流数据设置中触发强盗。
- 批准号:
2753522 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
- 批准号:
2225949 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Medium:DILSE: Codesigning Decentralized Incremental Learning System via Streaming Data Summarization on Edge
SHF:Medium:DILSE:通过边缘流数据汇总共同设计去中心化增量学习系统
- 批准号:
2211815 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant