Scaling Summaries in Multiscale Domains with Applications
通过应用程序扩展多尺度域中的摘要
基本信息
- 批准号:1613258
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many scientific experiments, the observations often present themselves as noise, making traditional data analytic techniques inadequate. The main objective of the proposed research is to develop and explore statistical models that produce informative scaling summaries for such noise-driven data with the goal of inference, classification, and prediction. This is achieved with the help of wavelets, one of the most efficient multiscale tools. Multiscale methodologies have evolved in the last two decades in disciplines ranging from theoretical statistics to geosciences. Understanding the scaling in data will lead to significant insights when analyzing massive, multidimensional, noisy, and seemingly chaotic data sets. The proposed research will impact various scientific fields that produce and utilize high-frequency data and images: most notably the areas of health diagnostics and atmospheric monitoring and prediction. In particular, the proposed methods will be applied to (1) breast cancer and lung cancer diagnostics by screening for the scaling features of digital mammograms and chest x-ray images, and (2) geoscientific analysis of turbulent atmospheric flows such as wind velocities, temperatures, and pollutant concentrations with the goal of modeling and prediction. The project will also contribute to the education and training of students through their deep engagement in the applications of novel techniques to problems from various scientific fields.The proposed framework for an alternative assessment of scaling present in data utilizes statistical modeling in the domain of real and complex scale-mixing wavelet transforms. The novel scale-mixing hierarchies of wavelet subspaces succinctly describe "fluxes-in-energy" among the multivariate components in data. Such descriptors will provide added insights and informative summaries in the form of monofractal and multifractal wavelet spectra and co-spectra, defined in a robust manner. The three scientific aims of the project include: (i) analyzing the properties of scale-mixing multidimensional wavelet coefficients for different decompositions (orthogonal, non-decimated, and wavelet packets), and investigating their relevance to scaling assessment, (ii) establishing theoretical properties of robust measures for regular and irregular scaling in non-standard multiscale domains, and (iii) translating theoretical advances of the proposed research to applications in geosciences, bioinformatics, and medical diagnostics.
在许多科学实验中,观测结果往往表现为噪音,使得传统的数据分析技术无法胜任。 拟议的研究的主要目标是开发和探索统计模型,为这些噪声驱动的数据产生信息丰富的缩放摘要,其目标是推断,分类和预测。 这是实现与小波的帮助下,最有效的多尺度工具之一。 在过去的二十年里,多尺度方法在从理论统计到地球科学的学科中得到了发展。 理解数据的缩放将在分析大量,多维,嘈杂和看似混乱的数据集时产生重要的见解。 拟议的研究将影响产生和利用高频数据和图像的各个科学领域:最值得注意的是健康诊断和大气监测和预测领域。特别是,所提出的方法将应用于(1)乳腺癌和肺癌诊断,通过筛选数字乳房X线照片和胸部X线图像的缩放特征,以及(2)湍流大气流的地球科学分析,如风速,温度和污染物浓度,目标是建模和预测。该项目还将有助于教育和培训的学生,通过他们的新技术的应用,从不同的科学领域的问题的深入参与。提出的框架,目前在数据中的缩放的替代评估利用统计建模领域的真实的和复杂的尺度混合小波变换。小波子空间的新尺度混合层次简洁地描述了数据中多变量分量之间的“能量通量”。 这些描述符将以单分形和多重分形小波谱和共谱的形式提供更多的见解和信息摘要,以稳健的方式定义。该项目的三个科学目标包括:(i)分析不同分解的尺度混合多维小波系数的性质(正交,非抽取,小波包),并调查其相关性的缩放评估,(ii)建立理论属性的鲁棒措施,为规则和不规则的缩放在非标准的多尺度域,以及(iii)将拟议研究的理论进展转化为地球科学、生物信息学和医学诊断学的应用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tandem-width sequential confidence intervals for a Bernoulli proportion
伯努利比例的串联宽度连续置信区间
- DOI:10.1080/07474946.2019.1611315
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yaacoub, Tony;Goldsman, David;Mei, Yajun;Moustakides, George V.
- 通讯作者:Moustakides, George V.
Correlation-based dynamic sampling for online high dimensional process monitoring
用于在线高维过程监控的基于相关性的动态采样
- DOI:10.1080/00224065.2020.1726717
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Nabhan, Mohammad;Mei, Yajun;Shi, Jianjun
- 通讯作者:Shi, Jianjun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yajun Mei其他文献
Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size
统计学家的私人序贯假设检验:隐私、错误率和样本量
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wanrong Zhang;Yajun Mei;Rachel Cummings - 通讯作者:
Rachel Cummings
A Personalized Threshold Method via Boosting for Sepsis Screening
通过增强脓毒症筛查的个性化阈值方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chen Feng;Paul M. Griffin;S. Kethireddy;Yajun Mei - 通讯作者:
Yajun Mei
Jugular Venous Catheterization is Not Associated with Increased Complications in Patients with Aneurysmal Subarachnoid Hemorrhage
- DOI:
10.1007/s12028-024-02173-1 - 发表时间:
2024-11-26 - 期刊:
- 影响因子:3.600
- 作者:
Feras Akbik;Yuyang Shi;Steven Philips;Cederic Pimentel-Farias;Jonathan A. Grossberg;Brian M. Howard;Frank Tong;C. Michael Cawley;Owen B. Samuels;Yajun Mei;Ofer Sadan - 通讯作者:
Ofer Sadan
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage–a Retrospective Propensity-Based Analysis
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛——基于倾向的回顾性分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;S. Kathleen;Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;William;Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels - 通讯作者:
O. Samuels
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage: a Retrospective Analysis and Propensity-Based Comparison
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛:回顾性分析和基于倾向的比较
- DOI:
10.1101/2020.08.31.20185181 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;K. Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;W. Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels - 通讯作者:
O. Samuels
Yajun Mei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yajun Mei', 18)}}的其他基金
Active Sequential Change-Point Analysis of Multi-Stream Data
多流数据的主动顺序变点分析
- 批准号:
2015405 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Adaptive and Rapid Spatial-Temporal Threat Detection over Networks
ATD:协作研究:网络上的自适应快速时空威胁检测
- 批准号:
1830344 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Online Monitoring of High-Dimensional Streaming Data Using Adaptive Order Shrinkage
合作研究:利用自适应阶次收缩在线监测高维流数据
- 批准号:
1362876 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Achieving Spatial Adaptation via Inconstant Penalization: Theory and Computational Strategies
通过不恒定惩罚实现空间适应:理论和计算策略
- 批准号:
1106940 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Streaming Data Analysis in Sensor Networks
职业:传感器网络中的流数据分析
- 批准号:
0954704 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Fundamental Bounds on Decentralized Adaptive Detection in Hidden Markov Models
隐马尔可夫模型中分散自适应检测的基本界限
- 批准号:
0830472 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
TRUSTED: SecuriTy SummaRies for SecUre SofTwarE Development
值得信赖:安全软件开发的安全摘要
- 批准号:
EP/X03688X/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Research Grant
How might an unmet patient need in metal health concerning memory be satisfied using transcribed session summaries
如何使用转录的会议摘要来满足患者在金属健康方面与记忆相关的未满足需求
- 批准号:
10045783 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
TRUSTED: SecuriTy SummaRies for SecUre SofTwarE Development
值得信赖:安全软件开发的安全摘要
- 批准号:
EP/X037274/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Developing computational tools for nonparametric summaries of income mobility
开发收入流动性非参数总结的计算工具
- 批准号:
2104607 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Fellowship Award
Using Natural Language Processing to Generate Text Summaries of Genomic Findings in Precision Oncology
使用自然语言处理生成精准肿瘤学基因组发现的文本摘要
- 批准号:
459011 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Studentship Programs
Developing and validating an online tool for learning and teaching how to write summaries in English
开发和验证用于学习和教授如何用英语撰写摘要的在线工具
- 批准号:
20H01292 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generating Natural Language Summaries for Charts and Graphs
为图表和图形生成自然语言摘要
- 批准号:
549949-2020 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
CRII: AF: Enriched Topological Summaries for Inverse Problems
CRII:AF:反问题的丰富拓扑摘要
- 批准号:
1850052 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Effectiveness of Patient Oriented Discharge Summaries (PODS) on Care Transitions in Ontario
面向患者的出院总结 (PODS) 对安大略省护理过渡的有效性
- 批准号:
401432 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Operating Grants
SPX: Automatically Parallelizing Approximate Data Analysis with Mergeable Summaries
SPX:通过可合并摘要自动并行化近似数据分析
- 批准号:
1918989 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant