Heat Equations, Boundary Operators and CR Geometry in Complex Analysis
复分析中的热方程、边界算子和 CR 几何
基本信息
- 批准号:0855822
- 负责人:
- 金额:$ 9.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The principal investigator will undertake a study of regularity properties and decay estimates of solutions to the weighted Cauchy-Riemann equations in several variables as well as the tangential Cauchy-Riemann equations on the boundaries of pseudoconvex domains. When the domain is unbounded, he will investigate the Kohn Laplacian via its heat equation and develop the necessary harmonic analysis and regularity theory to obtain pointwise estimates on the heat kernel and its derivatives. In the case that the CR-manifold is compact, the questions will depend on whether the CR-manifold is the boundary of a pseudoconvex domain or has at least two totally real directions to the tangent bundle. In the former case, the examination will focus on the relationship of compactness of the complex Green operator, the existence of Stein neighborhood bases, and a certain property known as the "P" sub "q" property. In the latter case, the principal investigator will undertake an analysis of the closed range properties of the tangential Cauchy-Riemann operator. A fundamental problem in several complex variables is to solve the tangential Cauchy-Riemann equations. Perhaps the most challenging aspects to this problem are the lack of ellipticity and the influence of the geometry on the analysis. The study of the tangential Cauchy-Riemann equations, however, has led to significant advances in the understanding of partial differential equations, perhaps the most striking examples being the existence of a locally nonsolvable linear partial differential equation (i.e., Lewy's example) and the development of pseudodifferential operators. This project will contribute to the understanding of the effect of the geometry of a CR-manifold on the regularity theory of the tangential Cauchy-Riemann operators.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。主要研究多变量加权Cauchy-Riemann方程的正则性和解的衰减估计,以及伪凸域边界上的切向Cauchy-Riemann方程。当区域无界时,他将通过其热方程研究Kohn Laplacian,并发展必要的调和分析和正则性理论,以获得对热核及其导数的点估计。在cr流形紧的情况下,问题将取决于cr流形是否是伪凸域的边界,或者至少有两个完全实的切束方向。在前一种情况下,检验将集中在复Green算子的紧性关系、Stein邻域基的存在性以及被称为“P”子“q”性质的某种性质上。在后一种情况下,首席研究员将对切向柯西-黎曼算子的闭合范围性质进行分析。几个复杂变量的一个基本问题是解切向柯西-黎曼方程。也许这个问题最具挑战性的方面是缺乏椭圆性和几何对分析的影响。然而,对切向Cauchy-Riemann方程的研究导致了对偏微分方程理解的重大进展,也许最引人注目的例子是局部不可解线性偏微分方程的存在(即Lewy的例子)和伪微分算子的发展。这个项目将有助于理解cr流形几何对切向柯西-黎曼算子正则性理论的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Raich其他文献
Compactness of the complex Green operator on CR-manifolds of hypersurface type
- DOI:
10.1007/s00208-009-0470-1 - 发表时间:
2009-12-22 - 期刊:
- 影响因子:1.400
- 作者:
Andrew Raich - 通讯作者:
Andrew Raich
Fundamental Solutions to □ b on Certain Quadrics
- DOI:
10.1007/s12220-012-9303-7 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Albert Boggess;Andrew Raich - 通讯作者:
Andrew Raich
Microglobal regularity and the global wavefront set
- DOI:
10.1007/s00209-018-2176-0 - 发表时间:
2018-11-26 - 期刊:
- 影响因子:1.000
- 作者:
Gustavo Hoepfner;Andrew Raich - 通讯作者:
Andrew Raich
Closed Range Estimates for $$\bar{\partial }_b$$ on CR Manifolds of Hypersurface Type
- DOI:
10.1007/s12220-019-00268-2 - 发表时间:
2019-09-13 - 期刊:
- 影响因子:1.500
- 作者:
Joel Coacalle;Andrew Raich - 通讯作者:
Andrew Raich
Hardy Spaces and Canonical Kernels on Quadric CR Manifolds
- DOI:
10.1007/s12220-024-01708-4 - 发表时间:
2024-06-10 - 期刊:
- 影响因子:1.500
- 作者:
Albert Boggess;Jennifer Brooks;Andrew Raich - 通讯作者:
Andrew Raich
Andrew Raich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Raich', 18)}}的其他基金
International Workshop on Partial Differential Equations and Complex Analysis
偏微分方程与复分析国际研讨会
- 批准号:
1841778 - 财政年份:2018
- 资助金额:
$ 9.56万 - 项目类别:
Standard Grant
Analysis and CR Geometry in Several Complex Variables
多复杂变量的分析与CR几何
- 批准号:
1405100 - 财政年份:2014
- 资助金额:
$ 9.56万 - 项目类别:
Standard Grant
Two Spring Lecture Series in Geometric Analysis
几何分析中的两个春季讲座系列
- 批准号:
0963810 - 财政年份:2010
- 资助金额:
$ 9.56万 - 项目类别:
Standard Grant
相似海外基金
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
- 批准号:
2307342 - 财政年份:2023
- 资助金额:
$ 9.56万 - 项目类别:
Standard Grant
Large steady solutions to the free-boundary Navier-Stokes equations
自由边界纳维-斯托克斯方程的大稳态解
- 批准号:
2886064 - 财政年份:2023
- 资助金额:
$ 9.56万 - 项目类别:
Studentship
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 9.56万 - 项目类别:
Standard Grant
Construction of a new mathematical model of grain boundary motion and development in the theory of differential equations
晶界运动新数学模型的构建及微分方程理论的发展
- 批准号:
22K03376 - 财政年份:2022
- 资助金额:
$ 9.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synchronization control of hyperbolic equations with van der Pol boundary condition and its application to secure communication systems
范德波尔边界条件双曲方程同步控制及其在安全通信系统中的应用
- 批准号:
21K03370 - 财政年份:2021
- 资助金额:
$ 9.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 9.56万 - 项目类别:
Standard Grant
Fourth order geometric evolution equations with nonlinear boundary conditions
具有非线性边界条件的四阶几何演化方程
- 批准号:
442279986 - 财政年份:2020
- 资助金额:
$ 9.56万 - 项目类别:
Research Fellowships
Study on free boundary problems arising in mathematical ecology and related nonlinear diffusion equations
数学生态学中自由边界问题及相关非线性扩散方程的研究
- 批准号:
19K03573 - 财政年份:2019
- 资助金额:
$ 9.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surface evolution equations with singular structure and boundary value problems
具有奇异结构和边值问题的表面演化方程
- 批准号:
19K14564 - 财政年份:2019
- 资助金额:
$ 9.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Applied Analysis of solutions to boundary value problems for evolution equations
演化方程边值问题解的应用分析
- 批准号:
2593211 - 财政年份:2019
- 资助金额:
$ 9.56万 - 项目类别:
Studentship