CMG COLLABORATIVE RESEARCH: Advanced Computational Models for Geological Storage of Carbon Dioxide

CMG 合作研究:二氧化碳地质封存的高级计算模型

基本信息

  • 批准号:
    0934747
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

Geological storage of captured carbon dioxide is an important part of an overall carbon capture and storage (CCS) strategy to reduce anthropogenic emissions of CO2. Mathematical models to describe geological storage involve partial differential equations for multiphase, multicomponent mass and energy transport in porous media, augmented by nonlinear material-specific constitutive equations and equations of state. These governing equations must be solved over large three-dimensional domains, at the field scale or even the full basin-wide scale, and over time periods of hundreds to thousands of years. These systems exhibit potentially large spatial variations over multiple length scales, and may involve large uncertainties in some of the key parameters, especially when leakage of CO2 or leakage of displaced brine is considered. The importance of leakage estimation, coupled with the large uncertainty in parameters associated with leakage, implies that a Monte Carlo type of approach is needed. This, in turn, implies that efficient computational tools are essential. This proposal focuses on the development and analysis of a set of new modeling and simulation approaches for large-scale injection and subsequent transport of carbon dioxide, including potential leakage along concentrated flow paths such as leaky wells. The objectives of the proposed research include (i) to develop new Eulerian-Lagrangian methods for multiphase multicomponent flow and reactive transport with application to storage of carbon dioxide; (ii) to embed the Eulerian-Lagrangian methods in a multi-scale hybrid framework to simulate large-scale transport as well as leakage along concentrated pathways; and (iii) to develop and analyze new, highly efficient stochastic approaches to deal with the large uncertainties inherent in the storage problem of carbon dioxide. In combination, these new computational approaches will allow for large-scale simulation of CO2 injection, migration, and possible leakage across a wide range of domains and applications. Anthropogenic emissions of carbon dioxide continue to increase the atmospheric concentration of carbon dioxide. The current concentration is the highest atmospheric concentration for at least the last 650,000 years. Current consensus is that such increases in atmospheric carbon dioxide are leading to global warming of the earth, with wide-ranging environmental implications. The carbon problem is arguably the most important environmental problem of the 21st century, and technological solutions are the only hope to solve the problem. One of the most promising technical solutions is carbon capture and geological storage. This proposal focuses on development of new computer simulation approaches that will allow the very large simulations required to properly analyze the geological storage option, including detailed risk assessment analysis with a focus on fluid leakage from the injection formation to other subsurface formations or to the atmosphere. This work will thereby have potentially wide impact on both technological and policy decisions associated with geological storage of captured CO2. Furthermore, the results of this work will be applicable to a wide range of other physical systems involving subsurface fluid movement, including groundwater contamination problems as well as oil and gas recovery. The proposed research activities will provide advanced interdisciplinary training to graduate and undergraduate students, including undergraduate students from the historically black South Carolina State University. All of these activities will have broad and long-lasting impacts and contribute directly to the intellectual infrastructure of the nation while addressing one of the grand environmental challenges for the 21st century.
对捕获的二氧化碳进行地质封存是减少人为CO2排放的总体碳捕获和封存战略的重要组成部分。描述地质储存的数学模型涉及多孔介质中多相、多组分质量和能量输运的偏微分方程,并由非线性材料特定本构方程和状态方程增强。这些控制方程必须在大的三维域上求解,在野外尺度甚至整个盆地尺度上,在数百到数千年的时间段内。这些系统在多个长度尺度上表现出潜在的大的空间变化,并且可能涉及一些关键参数的大的不确定性,特别是当考虑CO2泄漏或置换盐水泄漏时。渗漏估计的重要性,加上与渗漏有关的参数的很大不确定性,意味着需要一种蒙特卡罗类型的方法。这反过来又意味着有效的计算工具是必不可少的。本提案的重点是开发和分析一套新的建模和模拟方法,用于大规模注入和随后的二氧化碳输送,包括沿沿着集中流动路径的潜在泄漏,如泄漏威尔斯。本研究的目标包括:(i)开发新的欧拉-拉格朗日方法,用于多相多组分流动和反应输运,并应用于二氧化碳的储存;(ii)将欧拉-拉格朗日方法嵌入多尺度混合框架,以模拟大尺度输运以及沿沿着集中路径的泄漏;和(iii)开发和分析新的,高效的随机方法来处理在二氧化碳的存储问题中固有的大的不确定性。结合起来,这些新的计算方法将允许大规模模拟CO2注入,迁移和可能的泄漏在广泛的领域和应用。人为排放的二氧化碳继续增加大气中二氧化碳的浓度。目前的浓度是至少过去65万年来大气浓度的最高值。目前的共识是,大气中二氧化碳的这种增加正在导致地球的全球变暖,具有广泛的环境影响。碳问题可以说是21世纪世纪最重要的环境问题,技术解决方案是解决问题的唯一希望。最有前途的技术解决方案之一是碳捕获和地质储存。该提案侧重于开发新的计算机模拟方法,以便进行适当分析地质储存方案所需的大型模拟,包括详细的风险评估分析,重点是从注入地层到其他地下地层或大气的流体泄漏。因此,这项工作将对与捕获的CO2的地质储存有关的技术和政策决定产生潜在的广泛影响。此外,这项工作的结果将适用于广泛的其他物理系统,涉及地下流体运动,包括地下水污染问题以及石油和天然气回收。拟议的研究活动将为研究生和本科生提供先进的跨学科培训,包括来自历史上黑人的南卡罗来纳州州立大学的本科生。所有这些活动都将产生广泛和持久的影响,并直接有助于国家的知识基础设施,同时应对21世纪世纪的重大环境挑战之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong Wang其他文献

Uplink Performance Analysis in Multi-tier Heterogeneous Cellular Networks with Power Control and Biased User Association
具有功率控制和偏置用户关联的多层异构蜂窝网络中的上行链路性能分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Han Hu;Hong Wang;Qi Zhu;Ziyu Pan
  • 通讯作者:
    Ziyu Pan
On STAR-RIS-Aided NOMA With Multi-Group Detection
具有多组检测的 STAR-RIS 辅助 NOMA
  • DOI:
    10.1109/lwc.2023.3303414
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Shen Fu;Hong Wang;Haitao Zhao;Haochun Ma
  • 通讯作者:
    Haochun Ma
Control of networked traffic flow distribution: a stochastic distribution system perspective
网络流量分配的控制:随机分配系统的角度
Composite robust H1 control for uncertain stochastic nonlinear systems with state delay via disturbance observer
基于扰动观测器的状态延迟不确定随机非线性系统的复合鲁棒H1控制
A Novel Optical See-Through Head-Mounted Display with Occlusion and Intensity Matching Support
具有遮挡和强度匹配支持的新型光学透视头戴式显示器

Hong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong Wang', 18)}}的其他基金

CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
  • 批准号:
    2238818
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2055544
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2141426
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
  • 批准号:
    2012291
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
  • 批准号:
    1954422
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
  • 批准号:
    2000988
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
  • 批准号:
    1664708
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
  • 批准号:
    1620194
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1460319
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
  • 批准号:
    1025166
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1025417
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    1024936
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Non-assimilation Fusion of Data and Models
CMG协同研究:数据与模型的非同化融合
  • 批准号:
    1025453
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Probabilistic Stratigraphic Alignment and Dating of Paleoclimate Data
CMG 合作研究:概率地层排列和古气候数据测年
  • 批准号:
    1025438
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
  • 批准号:
    1025468
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Simulation of Wave-Current Interaction Using Novel, Coupled Non-Phase and Phase Resolving Wave and Current Models
CMG 合作研究:使用新型耦合非相位和相位解析波流模型模拟波流相互作用
  • 批准号:
    1025527
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
  • 批准号:
    1025188
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography- from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
  • 批准号:
    1025302
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了