Quantum Charge Tunneling through Self-Assembled Monolayers (SAMs)
通过自组装单层 (SAM) 的量子电荷隧道
基本信息
- 批准号:2203621
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With support from the Macromolecular, Supramolecular, and Nanochemistry (MSN) Program in the Division of Chemistry, Professor George Whitesides of Harvard University is studying how electrons are transported through molecules. Electrons do not move through molecules like they do when they flow through a metal. Instead, they tunnel through them. Tunneling is a quantum mechanical behavior that pertains only to very small particles, like electrons. The length that an electron can tunnel through a molecule, and how efficiently it can do it, depends on the molecule's structure and the arrangement of the chemical bonds. However, studying electron tunneling through molecules presents a significant challenge, as it requires separating two electrodes by a distance equivalent to the length of a single molecule. Professor Whitesides and his group will develop new methods for studying quantum tunneling in organic and bioorganic matter. Their discoveries could lead to new electronic devices and sensors, as well as a better understanding of molecular catalysis and enzymes that catalyze electron transport. This highly interdisciplinary project will also contribute to the development of the future science and technology workforce by training postdoctoral scholars on how to combine concepts, techniques, and tools in chemistry, biology, and physics.The project will advance the liquid eutectic Gallium-Indium (eGaIn) electrode system for characterizing quantum tunneling in organic self-assembled monolayers (SAMs). Surface plasmon spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) will be used to relate structural features to observed electrochemical behavior. The project aims to correlate rates of tunneling with molecular electronic structure and understand the effects of applied electric and magnetic fields on tunneling currents. Studies of bio-relevant SAMs in liquid environments will provide insights into the role surrounding liquids (and dissolved ions) play in charge conduction and establish a basis for electron-transfer rates in bioorganic systems. Studies of SAMs with embedded catalysts will examine the effect of oriented electric fields on catalytic transformations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系高分子、超分子和纳米化学 (MSN) 项目的支持下,哈佛大学的 George Whitesides 教授正在研究电子如何通过分子传输。电子不会像流经金属那样在分子中移动。相反,他们会穿过它们。隧道效应是一种量子力学行为,仅适用于非常小的粒子,例如电子。电子穿过分子的长度及其效率取决于分子的结构和化学键的排列。然而,研究分子中的电子隧道是一个重大挑战,因为它需要将两个电极分开相当于单个分子长度的距离。 怀特赛兹教授和他的团队将开发研究有机和生物有机物质中量子隧道效应的新方法。他们的发现可能会带来新的电子设备和传感器,以及对分子催化和催化电子传输的酶的更好理解。这个高度跨学科的项目还将通过培训博士后学者如何结合化学、生物学和物理学的概念、技术和工具,为未来科技劳动力的发展做出贡献。该项目将推进液体共晶镓-铟(eGaIn)电极系统,用于表征有机自组装单层(SAM)中的量子隧道效应。表面等离子体光谱、X射线光电子能谱(XPS)和原子力显微镜(AFM)将用于将结构特征与观察到的电化学行为联系起来。 该项目旨在将隧道速率与分子电子结构联系起来,并了解所施加的电场和磁场对隧道电流的影响。 对液体环境中生物相关 SAM 的研究将深入了解周围液体(和溶解离子)在电荷传导中的作用,并为生物有机系统中的电子转移速率奠定基础。 对嵌入催化剂的 SAM 的研究将检验定向电场对催化转化的影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Whitesides其他文献
Calcium response in bone cell network to mechanical stimulations
- DOI:
10.1016/j.bone.2008.07.051 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Bo Huo;X. Lux Lu;Andrew Baik;Kevin Costa;Qiaobing Xu;George Whitesides;X. Edward Guo - 通讯作者:
X. Edward Guo
George Whitesides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Whitesides', 18)}}的其他基金
Investigating Tunneling Across Self-Assembled Monolayers Using the Eutectic GaIn Junction
使用共晶 GaIn 结研究跨自组装单层的隧道效应
- 批准号:
1808361 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
The Role of Water in "the Hydrophobic Effect:" Carbonic Anhydrase as a Model Protein for Physical-Organic Studies of Biomolecular Recognition
水在“疏水效应”中的作用:碳酸酐酶作为生物分子识别物理有机研究的模型蛋白
- 批准号:
1152196 - 财政年份:2012
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Micron- to Millimeter-scale Self Assembly
微米至毫米级自组装
- 批准号:
0518055 - 财政年份:2005
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Meso-scale Systems Mimicking Molecules and Materials
模仿分子和材料的介观系统
- 批准号:
0101432 - 财政年份:2001
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Fabrication of Integrated Polymeric Microfluidic Systems
集成聚合物微流体系统的制造
- 批准号:
0004030 - 财政年份:2000
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Exploratory Studies in Materials for MEMS
MEMS 材料的探索性研究
- 批准号:
9713385 - 财政年份:1997
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Microelectromechanical and Microfluidic Systems
微机电和微流体系统
- 批准号:
9729405 - 财政年份:1997
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
U.S.-Germany Cooperative Research on the Use of Self- Assembled Monolayers to Tailor the Properties of Acoustic Plate Mode Biosensors
美德合作研究利用自组装单分子层定制声板模式生物传感器的性能
- 批准号:
9513339 - 财政年份:1996
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似国自然基金
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
Sema3E在CHARGE综合症中的作用及机制研究
- 批准号:81160144
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:地区科学基金项目
相似海外基金
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
- 批准号:
2400727 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
STTR Phase I: Potassium Ion Battery with Intermediate Charge Rate Competes with Lithium Ferrophosphate (LFP)-based Lithium-Ion Batteries (LIBs)
STTR 第一阶段:具有中等充电速率的钾离子电池与基于磷酸铁锂 (LFP) 的锂离子电池 (LIB) 竞争
- 批准号:
2332113 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
- 批准号:
2347542 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
- 批准号:
2325147 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Charge Patterning and Molecular Interactions in the Phase Behavior of Polyelectrolyte/Particle Solutions
聚电解质/颗粒溶液相行为中的电荷模式和分子相互作用
- 批准号:
2347031 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Charge-Controlled Materials for Separations of Important Resources
用于分离重要资源的电荷控制材料
- 批准号:
DP240103089 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Discovery Projects
Understanding the role of organic ligands on charge transport and photocurrent generation in layered perovskites
了解有机配体对层状钙钛矿中电荷传输和光电流产生的作用
- 批准号:
2892542 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Studentship
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
- 批准号:
2868548 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Studentship
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
- 批准号:
2308860 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
- 批准号:
2322706 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant














{{item.name}}会员




