ABI Innovation: Collaborative Research: Novel Methodologies for Genome-scale Evolutionary Analysis of Multi-locus Data

ABI 创新:协作研究:多位点数据基因组规模进化分析的新方法

基本信息

  • 批准号:
    1062463
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Rice University, the University of Michigan, and the University of Texas at Austin are awarded collaborative grants to develop and implement algorithms and software tools for the analysis of gene genealogies and inference of species phylogenies from them. A gene genealogy, also known as gene tree, models how genes replicate and get transmitted from one generation to the next during evolution. A species phylogeny models how species arise and diverge. A species phylogeny is traditionally inferred by a three-step process: (1) a genomic region from the set of species under study is sequenced; (2) a "gene tree" is inferred for the genomic region; and, (3) the gene tree is declared to be the species tree. However, recent evolutionary genomic analyses of various groups of organisms have demonstrated that different genomic regions may have evolutionary histories that disagree with each other as well as with that of the species. Further, evolutionary processes such as horizontal gene transfer, result in network-like, rather than tree-like, species phylogenies. This joint project will develop accurate computational methods for determining the causes of gene tree discordance, and inferring species phylogenies (trees as well as networks) from gene trees despite their discordance. Special emphasis will be put on the efficiency of the methods so that they allow for analysis of genome-scale data sets. All methods will be implemented and extensively tested for performance. All methods developed will be made publicly available in software packages that we have been developing in the respective groups. The material will be integrated into courses that the PIs regularly teach at their respective institutions. Last but not least, the project will culminate with a two-day workshop, open to students and post-doctoral fellows from around the country, with presentations by the investigators on the methodologies developed, as well as hands-on tutorials on using the tools in analyzing data.
莱斯大学、密歇根大学和德克萨斯大学奥斯汀分校获得合作赠款,用于开发和实施算法和软件工具,以分析基因谱系并从中推断物种的遗传。基因谱系,也称为基因树,模拟了基因在进化过程中如何复制和从一代传递到下一代。一个物种进化模型是物种如何产生和分化的。传统上通过三步过程来推断物种的进化:(1)对来自所研究的物种集合的基因组区域进行测序;(2)推断基因组区域的“基因树”;以及(3)将基因树宣布为物种树。然而,最近对不同生物群体的进化基因组分析表明,不同的基因组区域可能具有相互不一致的进化历史,以及与物种的进化历史。此外,进化过程,如水平基因转移,导致网络状,而不是树状,物种共生。该联合项目将开发精确的计算方法,以确定基因树不一致的原因,并从基因树中推断物种的遗传(树以及网络),尽管它们不一致。将特别强调这些方法的效率,以便能够分析基因组规模的数据集。所有方法都将得到实施,并进行广泛的性能测试。所有开发的方法都将以我们在各个小组开发的软件包的形式公开提供。这些材料将被纳入方案研究员在各自机构定期讲授的课程。最后但并非最不重要的是,该项目将以为期两天的研讨会结束,向来自全国各地的学生和博士后研究员开放,研究人员将介绍所开发的方法,以及使用工具分析数据的实践教程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luay Nakhleh其他文献

A survey of computational approaches for characterizing microbial interactions in microbial mats
  • DOI:
    10.1186/s13059-025-03634-2
  • 发表时间:
    2025-06-16
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Vanesa L. Perillo;Michael Nute;Nicolae Sapoval;Kristen D. Curry;Logan Golia;Yongze Yin;Huw A. Ogilvie;Luay Nakhleh;Santiago Segarra;Devaki Bhaya;Diana G. Cuadrado;Todd J. Treangen
  • 通讯作者:
    Todd J. Treangen
Comments on the model parameters in “SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models”
  • DOI:
    10.1186/s13059-019-1692-5
  • 发表时间:
    2019-05-16
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Hamim Zafar;Anthony Tzen;Nicholas Navin;Ken Chen;Luay Nakhleh
  • 通讯作者:
    Luay Nakhleh
Stranger in a strange land: the experiences of immigrant researchers
  • DOI:
    10.1186/s13059-017-1370-4
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Sophien Kamoun;Rosa Lozano-Durán;Luay Nakhleh
  • 通讯作者:
    Luay Nakhleh

Luay Nakhleh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luay Nakhleh', 18)}}的其他基金

DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics
DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用
  • 批准号:
    2153704
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
III: Medium: Scalable Evolutionary Analysis of SNVs and CNAs in Cancer Using Single-Cell DNA Sequencing Data
III:中:使用单细胞 DNA 测序数据对癌症中的 SNV 和 CNA 进行可扩展的进化分析
  • 批准号:
    2106837
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
IIBR Informatics: Taming Complexity Through Simulations: Scalable Inference Under the Coalescent with Recombination
IIBR 信息学:通过模拟驯服复杂性:重组合并下的可扩展推理
  • 批准号:
    2030604
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
  • 批准号:
    1916093
  • 财政年份:
    2019
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
III: Small: Models and Methods for Simultaneous Genotyping and Phylogeny Inference from Single-Cell DNA Data
III:小型:根据单细胞 DNA 数据同时进行基因分型和系统发育推断的模型和方法
  • 批准号:
    1812822
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
AF: Medium: Algorithms for Scalable Phylogenetic Network Inference
AF:Medium:可扩展系统发育网络推理算法
  • 批准号:
    1800723
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
AF: Medium: Statistical Inference of Complex Evolutionary Histories
AF:媒介:复杂进化历史的统计推断
  • 批准号:
    1514177
  • 财政年份:
    2015
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
AF: Medium: Algorithmic Foundations for Phylogenetic Networks
AF:中:系统发育网络的算法基础
  • 批准号:
    1302179
  • 财政年份:
    2013
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
CAREER: Computational Tools for Evolutionary Analysis of Biological Interaction Networks
职业:生物相互作用网络进化分析的计算工具
  • 批准号:
    0845336
  • 财政年份:
    2009
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
SGER: NET HMMs and Their Applications to Biological Network Alignment
SGER:NET HMM 及其在生物网络对齐中的应用
  • 批准号:
    0829276
  • 财政年份:
    2008
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759729
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model -based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759708
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Automated Prioritization and Design of Experiments to Validate and Improve Mathematical Models of Molecular Regulatory Systems
合作研究:ABI 创新:自动优先排序和实验设计,以验证和改进分子调控系统的数学模型
  • 批准号:
    1759858
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    1759821
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了