AF: Medium: Algorithms for Scalable Phylogenetic Network Inference
AF:Medium:可扩展系统发育网络推理算法
基本信息
- 批准号:1800723
- 负责人:
- 金额:$ 96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Species phylogenies model how species split and diverge and provide important insight into fundamental biological phenomena and processes, including biodiversity, and trait evolution, while gene trees provide insight into protein structure and function as well as systems biology. Advances in sequencing technologies and assembly methods and the availability of whole-genome datasets have opened up the possibility of transformative improvements in accuracy for estimating species phylogenies and gene trees. Phylogenetic networks extend phylogenetic trees to provide an appropriate model of reticulate evolutionary histories. Reticulate evolution describes the origination of a lineage through partial merging of two ancestor lineages. Recently developed methods allow for statistical inference of phylogenetic networks in order to account for other processes that could be at play during the evolution of the genomes. However, these methods can handle fewer than a handful of genomes. This award will develop methods for estimating large-scale phylogenetic networks from sequence data as well as gene tree estimates. The award will stimulate research in computer science and statistics and will have a major impact on evolutionary biology. The award will contribute open-source code to the PhyloNet software package. Lectures and tutorials will be given to the community on the developments made in the award and on the use of PhyloNet. The award will provide ample opportunities for training students and post-doctoral fellows in cutting-edge, interdisciplinary algorithmic research.The project will be carried out through five activities that are intertwined throughout the lifetime of the award. (1) Development of novel algorithmic techniques for scalable inference of phylogenetic networks that allow for analyzing data sets with tens and even hundreds of genomes. (2) Implementation and of all methods in the PhyloNet software package. (3) Thorough evaluation of the methods in terms of accuracy and computational requirements. (4) Mentoring and training of students and post-doctoral fellows. (5) Dissemination of the results through an open-source software package, publications in peer-reviewed journals and conference proceedings, lectures and tutorials, and course materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物种遗传学模拟了物种如何分裂和分化,并提供了对基本生物现象和过程的重要见解,包括生物多样性和性状进化,而基因树则提供了对蛋白质结构和功能以及系统生物学的见解。测序技术和组装方法的进步以及全基因组数据集的可用性为估计物种遗传和基因树的准确性提供了变革性改进的可能性。系统发生网络扩展了系统发生树,为网状进化历史提供了一个合适的模型。网状进化描述了通过两个祖先谱系的部分融合而产生的谱系。最近开发的方法允许系统发育网络的统计推断,以考虑其他过程中可能发挥作用的基因组的进化。然而,这些方法只能处理少于少数的基因组。该奖项将开发用于从序列数据以及基因树估计中估计大规模系统发育网络的方法。该奖项将刺激计算机科学和统计学的研究,并将对进化生物学产生重大影响。该奖项将为PhyloNet软件包提供开放源代码。将向社区提供讲座和辅导,介绍奖项的发展情况和PhyloNet的使用情况。该奖项将为培养学生和博士后研究员提供充足的机会,进行前沿的跨学科算法研究。该项目将通过五项活动进行,这些活动在整个奖项的生命周期内相互交织。(1)开发新的算法技术,用于系统发育网络的可扩展推理,允许分析具有数十甚至数百个基因组的数据集。(2)PhyloNet软件包中所有方法的实施和执行。(3)在准确性和计算要求方面对这些方法进行全面评价。(4)指导和培训学生和博士后研究员。(5)通过开源软件包、同行评审期刊和会议记录中的出版物、讲座和教程以及课程材料传播结果。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力评估来支持优点和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A divide-and-conquer method for scalable phylogenetic network inference from multilocus data
从多位点数据进行可扩展系统发育网络推理的分而治之方法
- DOI:10.1093/bioinformatics/btz359
- 发表时间:2019
- 期刊:
- 影响因子:5.8
- 作者:Zhu, Jiafan;Liu, Xinhao;Ogilvie, Huw A.;Nakhleh, Luay K.
- 通讯作者:Nakhleh, Luay K.
Practical Speedup of Bayesian Inference of Species Phylogenies by Restricting the Space of Gene Trees
通过限制基因树的空间来实际加速物种系统发育的贝叶斯推理
- DOI:10.1093/molbev/msaa045
- 发表时间:2020
- 期刊:
- 影响因子:10.7
- 作者:Wang, Yaxuan;Ogilvie, Huw A;Nakhleh, Luay;Harris, Kelley
- 通讯作者:Harris, Kelley
Integrated likelihood for phylogenomics under a no-common-mechanism model
非共同机制模型下系统基因组学的综合可能性
- DOI:10.1186/s12864-020-6608-y
- 发表时间:2020
- 期刊:
- 影响因子:4.4
- 作者:Tidwell, Hunter;Nakhleh, Luay
- 通讯作者:Nakhleh, Luay
Empirical Performance of Tree-Based Inference of Phylogenetic Networks
系统发育网络基于树的推理的实证性能
- DOI:10.1101/693986
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Cao, Zhen;Zhu, Jiafan;Nakhleh, Luay
- 通讯作者:Nakhleh, Luay
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luay Nakhleh其他文献
A survey of computational approaches for characterizing microbial interactions in microbial mats
- DOI:
10.1186/s13059-025-03634-2 - 发表时间:
2025-06-16 - 期刊:
- 影响因子:9.400
- 作者:
Vanesa L. Perillo;Michael Nute;Nicolae Sapoval;Kristen D. Curry;Logan Golia;Yongze Yin;Huw A. Ogilvie;Luay Nakhleh;Santiago Segarra;Devaki Bhaya;Diana G. Cuadrado;Todd J. Treangen - 通讯作者:
Todd J. Treangen
Comments on the model parameters in “SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models”
- DOI:
10.1186/s13059-019-1692-5 - 发表时间:
2019-05-16 - 期刊:
- 影响因子:9.400
- 作者:
Hamim Zafar;Anthony Tzen;Nicholas Navin;Ken Chen;Luay Nakhleh - 通讯作者:
Luay Nakhleh
Stranger in a strange land: the experiences of immigrant researchers
- DOI:
10.1186/s13059-017-1370-4 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:9.400
- 作者:
Sophien Kamoun;Rosa Lozano-Durán;Luay Nakhleh - 通讯作者:
Luay Nakhleh
Luay Nakhleh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luay Nakhleh', 18)}}的其他基金
DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics
DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用
- 批准号:
2153704 - 财政年份:2022
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
III: Medium: Scalable Evolutionary Analysis of SNVs and CNAs in Cancer Using Single-Cell DNA Sequencing Data
III:中:使用单细胞 DNA 测序数据对癌症中的 SNV 和 CNA 进行可扩展的进化分析
- 批准号:
2106837 - 财政年份:2021
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
IIBR Informatics: Taming Complexity Through Simulations: Scalable Inference Under the Coalescent with Recombination
IIBR 信息学:通过模拟驯服复杂性:重组合并下的可扩展推理
- 批准号:
2030604 - 财政年份:2020
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
- 批准号:
1916093 - 财政年份:2019
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
III: Small: Models and Methods for Simultaneous Genotyping and Phylogeny Inference from Single-Cell DNA Data
III:小型:根据单细胞 DNA 数据同时进行基因分型和系统发育推断的模型和方法
- 批准号:
1812822 - 财政年份:2018
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
AF: Medium: Statistical Inference of Complex Evolutionary Histories
AF:媒介:复杂进化历史的统计推断
- 批准号:
1514177 - 财政年份:2015
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
AF: Medium: Algorithmic Foundations for Phylogenetic Networks
AF:中:系统发育网络的算法基础
- 批准号:
1302179 - 财政年份:2013
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
ABI Innovation: Collaborative Research: Novel Methodologies for Genome-scale Evolutionary Analysis of Multi-locus Data
ABI 创新:协作研究:多位点数据基因组规模进化分析的新方法
- 批准号:
1062463 - 财政年份:2011
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
CAREER: Computational Tools for Evolutionary Analysis of Biological Interaction Networks
职业:生物相互作用网络进化分析的计算工具
- 批准号:
0845336 - 财政年份:2009
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
SGER: NET HMMs and Their Applications to Biological Network Alignment
SGER:NET HMM 及其在生物网络对齐中的应用
- 批准号:
0829276 - 财政年份:2008
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
- 批准号:
2212130 - 财政年份:2022
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Polynomial Optimization: Algorithms, Certificates and Applications
合作研究:AF:媒介:多项式优化:算法、证书和应用
- 批准号:
2211972 - 财政年份:2022
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Polynomial Optimization: Algorithms, Certificates and Applications
合作研究:AF:媒介:多项式优化:算法、证书和应用
- 批准号:
2211971 - 财政年份:2022
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
- 批准号:
2212129 - 财政年份:2022
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
AF: Medium: Research in Algorithms and Complexity for Total Functions
AF:中:全函数的算法和复杂性研究
- 批准号:
2212233 - 财政年份:2022
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2106699 - 财政年份:2021
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant