AF: Medium: Algorithmic Foundations for Phylogenetic Networks

AF:中:系统发育网络的算法基础

基本信息

  • 批准号:
    1302179
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-04-15 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Phylogenies, or evolutionary histories, play a central role in biology as a framework within which to understand all of Life's diversity. In Charles Darwin's Origin of Species, the depiction of an evolutionary history of species took the shape of a tree. Ever since, trees have been the most commonly used structure to model evolutionary histories. However, while trees capture how, for example, one species splits into two that subsequently diversify and how genetic material is transmitted from ancestor to descendants, they fail to capture other evolutionary events. For example, some plant species arise due to hybridization between pairs of other species. In the microbial world, bacteria transmit genetic material horizontally by various means. In these cases, a tree gives an incomplete picture of the evolutionary history at best, and a very misleading one in the worst case. Indeed, a more appropriate model of evolutionary histories in these cases is a phylogenetic network, which extends the tree model by incorporating evolutionary events such as hybridization and horizontal gene transfer. Despite an increased research activity in the area of phylogenetic networks in recent years, their reconstruction and evaluation remain largely ad hoc processes and limited in their applicability to specific datasets. To enable the development of methodologies for systematic reconstructing and evaluating phylogenetic networks, this project is aimed at developing (1) algorithms for evaluating the quality of phylogenetic networks using genomic data, and (2) algorithms for searching the phylogenetic network space to enable automatic inference of evolutionary histories. The outcome of the proposed work will help significantly extend the applicability of phylogeny to groups of organisms for which trees are inappropriate, as well as to understand the phylogenetic network model, thus allowing for a more systematic development of methodologies for its accurate reconstruction. Further, the results will enable a more accurate reconstruction of the Tree of Life, help unravel microbial genome diversification, facilitate the reconstruction of hybridization scenarios in plants and other groups of organisms, and help understand the mechanisms by which microbes develop resistance to antibiotics. The project provides outstanding opportunities for training graduate and undergraduate students in an interdisciplinary research area.
系统发育,或进化史,在生物学中起着核心作用,作为理解所有生命多样性的框架。 在查尔斯·达尔文的《物种起源》中,物种进化史的描述采用了一棵树的形状。从那以后,树一直是最常用的结构来模拟进化历史。然而,尽管树木捕捉到了例如一个物种如何分裂成两个随后多样化的物种,以及遗传物质如何从祖先传递到后代,但它们未能捕捉到其他进化事件。例如,一些植物物种是由于其他物种之间的杂交而产生的。在微生物世界中,细菌通过各种方式水平传播遗传物质。在这些情况下,一棵树充其量只能给出一幅不完整的进化历史图,而在最坏的情况下,这幅图会非常误导人。事实上,在这些情况下,一个更合适的进化历史模型是系统发生网络,它通过纳入杂交和水平基因转移等进化事件来扩展树模型。尽管近年来在系统发育网络领域的研究活动有所增加,但其重建和评估在很大程度上仍然是临时过程,并且其对特定数据集的适用性有限。为了开发系统重建和评价系统发生网络的方法学,本研究课题的目的是开发(1)利用基因组数据评价系统发生网络质量的算法,(2)为自动推断进化历史而搜索系统发生网络空间的算法。拟议工作的结果将有助于显着扩大的适用性的生物群体的树是不合适的,以及了解系统发育网络模型,从而允许更系统地发展的方法,其准确的重建。此外,这些结果将能够更准确地重建生命之树,有助于揭示微生物基因组的多样化,促进植物和其他生物群体中杂交场景的重建,并有助于了解微生物对抗生素产生耐药性的机制。 该项目为跨学科研究领域的研究生和本科生提供了出色的培训机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luay Nakhleh其他文献

A survey of computational approaches for characterizing microbial interactions in microbial mats
  • DOI:
    10.1186/s13059-025-03634-2
  • 发表时间:
    2025-06-16
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Vanesa L. Perillo;Michael Nute;Nicolae Sapoval;Kristen D. Curry;Logan Golia;Yongze Yin;Huw A. Ogilvie;Luay Nakhleh;Santiago Segarra;Devaki Bhaya;Diana G. Cuadrado;Todd J. Treangen
  • 通讯作者:
    Todd J. Treangen
Comments on the model parameters in “SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models”
  • DOI:
    10.1186/s13059-019-1692-5
  • 发表时间:
    2019-05-16
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Hamim Zafar;Anthony Tzen;Nicholas Navin;Ken Chen;Luay Nakhleh
  • 通讯作者:
    Luay Nakhleh
Stranger in a strange land: the experiences of immigrant researchers
  • DOI:
    10.1186/s13059-017-1370-4
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Sophien Kamoun;Rosa Lozano-Durán;Luay Nakhleh
  • 通讯作者:
    Luay Nakhleh

Luay Nakhleh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luay Nakhleh', 18)}}的其他基金

DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics
DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用
  • 批准号:
    2153704
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
III: Medium: Scalable Evolutionary Analysis of SNVs and CNAs in Cancer Using Single-Cell DNA Sequencing Data
III:中:使用单细胞 DNA 测序数据对癌症中的 SNV 和 CNA 进行可扩展的进化分析
  • 批准号:
    2106837
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
IIBR Informatics: Taming Complexity Through Simulations: Scalable Inference Under the Coalescent with Recombination
IIBR 信息学:通过模拟驯服复杂性:重组合并下的可扩展推理
  • 批准号:
    2030604
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
  • 批准号:
    1916093
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
III: Small: Models and Methods for Simultaneous Genotyping and Phylogeny Inference from Single-Cell DNA Data
III:小型:根据单细胞 DNA 数据同时进行基因分型和系统发育推断的模型和方法
  • 批准号:
    1812822
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
AF: Medium: Algorithms for Scalable Phylogenetic Network Inference
AF:Medium:可扩展系统发育网络推理算法
  • 批准号:
    1800723
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Medium: Statistical Inference of Complex Evolutionary Histories
AF:媒介:复杂进化历史的统计推断
  • 批准号:
    1514177
  • 财政年份:
    2015
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
ABI Innovation: Collaborative Research: Novel Methodologies for Genome-scale Evolutionary Analysis of Multi-locus Data
ABI 创新:协作研究:多位点数据基因组规模进化分析的新方法
  • 批准号:
    1062463
  • 财政年份:
    2011
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
CAREER: Computational Tools for Evolutionary Analysis of Biological Interaction Networks
职业:生物相互作用网络进化分析的计算工具
  • 批准号:
    0845336
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
SGER: NET HMMs and Their Applications to Biological Network Alignment
SGER:NET HMM 及其在生物网络对齐中的应用
  • 批准号:
    0829276
  • 财政年份:
    2008
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
  • 批准号:
    2107547
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
  • 批准号:
    2107079
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Medium: Theory of Computation - New Algorithmic and Hardness Techniques
AF:媒介:计算理论 - 新算法和硬度技术
  • 批准号:
    1900460
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Medium: Algorithmic Explorations of Networks, Markets, Evolution, and the Brain
AF:媒介:网络、市场、进化和大脑的算法探索
  • 批准号:
    1819935
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies
AF:中:协作研究:结构化核酸组装体的自上而下的算法设计
  • 批准号:
    1564025
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Econometric Inference and Algorithmic Learning in Games
AF:媒介:协作研究:游戏中的计量经济学推理和算法学习
  • 批准号:
    1563708
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Econometric Inference and Algorithmic Learning in Games
AF:媒介:协作研究:游戏中的计量经济学推理和算法学习
  • 批准号:
    1563714
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies
AF:中:协作研究:结构化核酸组装体的自上而下的算法设计
  • 批准号:
    1563799
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Medium: Algorithmic Complexity in Computation and Biology
AF:中:计算和生物学中的算法复杂性
  • 批准号:
    1509178
  • 财政年份:
    2015
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Algorithmic Foundations for Trajectory Collection Analysis
AF:媒介:协作研究:轨迹收集分析的算法基础
  • 批准号:
    1513816
  • 财政年份:
    2015
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了