Cluster algebras, critical groups, and tropical curves
簇代数、临界群和热带曲线
基本信息
- 批准号:1067183
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will pursue three related projects, which highlight the interplay between algebraic combinatorics, representation theory, and tropical geometry. The first project involves a study of cluster algebras, defined by Fomin and Zelevinsky, with an eye towards proving the positivity conjecture that has been open since the founding of this field in 2001. The second project is an exploration of critical groups of graphs, also known as sandpile groups, which were independently introduced by researchers in diverse fields such as graph theory, dynamical systems, electrical networks, and arithmetic geometry. The third project considers various objects from algebraic geometry, including linear systems and Jacobians, and examines their analogues for metric graphs, also known in the literature as quantum graphs or abstract tropical curves. In addition to a number of intrinsic questions arising in each of these fields, the topics of these three projects exhibit intriguing connections to other areas in both pure and applied mathematics. Some of these subjects are Teichmuller theory, number theory, and geometric combinatorics, as well as mathematical physics, combinatorial optimization, and mathematical biology. At its heart, algebraic combinatorics involves counting, but this enumeration typically is done while keeping track of certain data. This is similar to the census, where it is more useful to obtain a detailed breakdown including demographic information rather than simply a single number stating the number of Americans. A common theme throughout the PI's research is the use of such enumeration techniques to provide new approaches for solving problems in other areas of mathematics. For example, in the theory of cluster algebras, certain geometric formulas arise through a process called seed mutation. However, these same expressions can be computed instead by counting, as long as one knows what features for which to look. The PI will study more phenomena like this, where complicated expressions can be reduced to more concrete calculations. The above topics naturally lend themselves to computational projects and undergraduate research. For instance, the PI plans to use the open source math software Sage with students to get more of them interested in these topics, while creating computational packages for other researchers. This work may also lead to the discovery of new combinatorial patterns motivating further research.
PI将从事三个相关的项目,突出代数组合学,表示论和热带几何之间的相互作用。 第一个项目涉及研究由Fomin和Zelevinsky定义的簇代数,着眼于证明自2001年该领域成立以来一直开放的正性猜想。 第二个项目是对图的临界群的探索,也称为沙堆群,这是由不同领域的研究人员独立引入的,如图论,动力系统,电气网络和算术几何。 第三个项目考虑了代数几何中的各种对象,包括线性系统和雅可比矩阵,并研究了度量图的类似物,在文献中也称为量子图或抽象热带曲线。 除了一些内在的问题,在每个这些领域,这三个项目的主题表现出有趣的连接到其他领域的纯数学和应用数学。 其中一些学科是Teichmuller理论,数论和几何组合学,以及数学物理,组合优化和数学生物学。代数组合学的核心是计数,但这种枚举通常是在跟踪某些数据的同时完成的。 这类似于人口普查,获得包括人口统计信息的详细分类比简单地说明美国人数量的单个数字更有用。 PI研究的一个共同主题是使用这种枚举技术为解决其他数学领域的问题提供新的方法。 例如,在簇代数理论中,某些几何公式通过一个称为种子突变的过程产生。 然而,这些相同的表达式可以通过计数来计算,只要知道要寻找哪些特征。 PI将研究更多类似的现象,复杂的表达式可以简化为更具体的计算。 上述主题自然适合于计算项目和本科生研究。 例如,PI计划与学生一起使用开源数学软件Sage,让更多的学生对这些主题感兴趣,同时为其他研究人员创建计算软件包。 这项工作也可能导致新的组合模式的发现,激励进一步的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregg Musiker其他文献
Combinatorial Interpretations for Rank-Two Cluster Algebras of Affine Type
仿射型二阶簇代数的组合解释
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0.7
- 作者:
Gregg Musiker;J. Propp - 通讯作者:
J. Propp
Aztec castles and the dP3 quiver
阿兹特克城堡和 dP3 箭袋
- DOI:
10.1088/1751-8113/47/47/474011 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Megan Leoni;Gregg Musiker;Seth Neel;Paxton Turner - 通讯作者:
Paxton Turner
Linear systems on tropical curves
热带曲线上的线性系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0.8
- 作者:
Christian Haase;Gregg Musiker;Josephine Yu - 通讯作者:
Josephine Yu
On maximal green sequences for type A quivers
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Gregg Musiker - 通讯作者:
Gregg Musiker
A new characterization for the m-quasiinvariants of Sn and explicit basis for two row hook shapes
Sn m-准不变量的新表征和两排钩形状的显式基础
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jason Bandlow;Gregg Musiker - 通讯作者:
Gregg Musiker
Gregg Musiker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregg Musiker', 18)}}的其他基金
FRG: Collaborative Research: Dimers in Combinatorics and Physics
FRG:合作研究:组合学和物理学中的二聚体
- 批准号:
1854162 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Cluster Algebras, Atomic Bases, and String Theory
簇代数、原子基和弦理论
- 批准号:
1362980 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSE: Sage-Combinat: Developing and Sharing Open Source Software for Algebraic Combinatorics
合作研究:SI2-SSE:Sage-Combinat:开发和共享代数组合开源软件
- 批准号:
1147161 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Cluster algebras, critical groups, and tropical curves
簇代数、临界群和热带曲线
- 批准号:
0969071 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Categorification and KLR algebras
分类和 KLR 代数
- 批准号:
DP240101809 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Discovery Projects
Quantum algebras with supersymmetries
具有超对称性的量子代数
- 批准号:
DP240101572 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Discovery Projects
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Conference: Young Mathematicians in C*-Algebras 2024
会议:C*-代数中的青年数学家 2024
- 批准号:
2404675 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shuffle algebras and vertex models
洗牌代数和顶点模型
- 批准号:
DP240101787 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Discovery Projects














{{item.name}}会员




