Partial Differential Equations and Several Complex Variables

偏微分方程和多个复变量

基本信息

  • 批准号:
    1101415
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Two of the most important equations in several complex variables are the Cauchy-Riemann equations and the induced tangential Cauchy-Riemann equations. The understanding of these equations have been the focal point of research in complex analysis in the past few decades. The problems addressed in this project include the Cauchy-Riemann equations and the tangential Cauchy-Riemann complex on complex manifolds, especially on complex projective spaces (which is compact and with positive curvature) and negatively curved manifolds. Understanding the geometric aspects of these equations under the curvature conditions and their relations with function theory in complex manifolds are some of the most challenging and important problems in complex analysis and geometry. The study of several complex variables in a geometric or non-smooth setting has provided interesting new questions with fresh insight to problems in topology, foliation theory, complex dynamics, algebraic and complex geometry. Complex geometric theory has only just begun to develop and Shaw will continue her efforts in this direction. She will also continue her research on applying the geometric measure theory and harmonic analysis to several complex variables for non-smooth domains. Since the pioneering work of Poincare and Hartogs more than a century ago, the field of several complex variables has played a major role in modern mathematics. The use of partial differential equations has been the main tool for studying several complex variables, as well as complex geometry in the past few decades. The broader impacts from the proposed activity are that these problems are at the intersection of analysis, geometry and topology with applications in applied mathematics and physics. Other than the mathematical areas described in the proposal, recent progress in the Dirichlet and Neumann problem on nonsmooth domains has found applications in other disciplines like physics and engineering. The Hodge theorem is an extension of the classical Dirichlet Principle, the canonical solution to the energy minimizing problem arising from the heat transfer problem. Recent applications of the theorem on domains with corners and wedges have been used in electrokinetics and other fields in engineering and physics. The PI will use all of these ideas in her work mentoring students and the writing of a text that makes some of these partial differential equations topics more accessible to a wider range of mathematicians, especially those working in geometry and complex analysis.
多复变函数中最重要的两个方程是柯西-黎曼方程和诱导切向柯西-黎曼方程。在过去的几十年里,对这些方程的理解一直是复分析研究的焦点。在这个项目中解决的问题包括Cauchy-Riemann方程和切Cauchy-Riemann复形,特别是在复流形上, 复射影空间(紧致且具有正曲率)和负曲率流形。 理解这些方程在曲率条件下的几何方面及其与复流形中函数论的关系 是复杂分析和几何中一些最具挑战性和最重要的问题。在几何或非光滑环境中对多个复变的研究提供了有趣的新问题 以新的视角来看待 拓扑学, 叶理理论,复动力学,代数 复杂的几何形状。复杂的几何 理论才刚刚开始发展, Shaw将继续朝着这个方向努力。她还将继续她的研究应用几何测度理论和谐波分析几个复杂的变量为非光滑域。自从庞加莱和哈托格斯在世纪前的开创性工作以来,多复变领域在现代数学中发挥了重要作用。在过去的几十年里,偏微分方程的使用一直是研究多个复变量以及复杂几何的主要工具。拟议活动的更广泛的影响是,这些问题是在分析,几何和拓扑学与应用数学和物理学的应用交叉。 除了提案中描述的数学领域外,非光滑域上的狄利克雷和诺依曼问题的最新进展在物理和工程等其他学科中也有应用。霍奇定理是经典狄利克雷原理的推广,狄利克雷原理是热传导问题中能量最小化问题的标准解。角域和楔域定理的最新应用已被用于电动力学和工程物理的其他领域。PI将在她的工作中使用所有这些想法来指导学生并编写一篇文本,使更广泛的数学家,特别是那些从事几何和复分析工作的数学家更容易理解其中一些偏微分方程主题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mei-Chi Shaw其他文献

Local existence theorems with estimates for ∂b on weakly pseudo-convex CR manifolds
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
L 2 existence theorems for the $$\bar \partial _b - Neumann$$ problem on strongly pseudoconvex CR manifoldsproblem on strongly pseudoconvex CR manifolds
  • DOI:
    10.1007/bf02938117
  • 发表时间:
    1991-06-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
L2 estimates and existence theorems for the tangential Cauchy-Riemann complex
  • DOI:
    10.1007/bf01394783
  • 发表时间:
    1985-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
Local existence theorems with estimates for $$\bar \partial _b $$ on weakly pseudo-convex CR manifolds
  • DOI:
    10.1007/bf01934348
  • 发表时间:
    1992-12
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
$C^\infty$ -regularity of solutions of the tangential CR-equations on weakly pseudoconvex manifolds
  • DOI:
    10.1007/s002080050181
  • 发表时间:
    1998-05-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Joachim Michel;Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw

Mei-Chi Shaw的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mei-Chi Shaw', 18)}}的其他基金

Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1954347
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Conference on Complex Geometry and Several Complex Variables
复杂几何与多复变量会议
  • 批准号:
    1800478
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1700003
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1362175
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
INTERNATIONAL CONFERENCE ON NEVANLINNA THEORY and COMPLEX GEOMETRY
NEVANLINNA 理论和复杂几何国际会议
  • 批准号:
    1142200
  • 财政年份:
    2012
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0801200
  • 财政年份:
    2008
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0500672
  • 财政年份:
    2005
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0100492
  • 财政年份:
    2001
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Several Complex Variables
偏微分方程和多个复变量
  • 批准号:
    9801091
  • 财政年份:
    1998
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations and Several Complex Variables
数学科学:偏微分方程和多个复变量
  • 批准号:
    9424122
  • 财政年份:
    1995
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CISE-ANR: Small: Evolutional deep neural network for resolution of high-dimensional partial differential equations
CISE-ANR:小型:用于求解高维偏微分方程的进化深度神经网络
  • 批准号:
    2214925
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了