Partial Differential Equations in Several Complex Variables

多个复变量的偏微分方程

基本信息

  • 批准号:
    1362175
  • 负责人:
  • 金额:
    $ 26.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

Complex analysis in one and several variables occupies a central place in mathematics and mathematical physics. The use of complex numbers is essential in the development of mathematics. The concept of phase in complex analysis, for example, is commonly used in control theory, image analysis and dynamical systems. Certain important structures in physics arise from an integration of complex analysis with partial differential equations. Partial differential equations and several complex variables are also used in String and Twister mathematical physical theories that try to unify different physical force fields. For all these applications, foundational questions concerning the solution of such partial differential equations under certain geometric constraints are still not fully understood and they form some of the most challenging problems in mathematics. The current study is not only important for the development in mathematics, but it may lead to new understanding of physical phenomena with potential applications in other sciences and technology. This research will focus on some of the most important equations in several complex variables, including the Cauchy-Riemann equations and the induced tangential Cauchy- Riemann equations. The problems discussed in this proposal include function theory on complex manifolds, Hausdorff property of Dolbeault cohomology groups, Levi-flat hypersur- faces and complex foliation, the Cauchy-Riemann operators on complex pro jective spaces and negatively curved manifolds. Understanding the geometric aspects of these equations under the curvature conditions and their relations with function theory in complex manifolds is one of the most challenging and important problems in complex analysis and geometry. New approaches have been introduced to study these problems which connect the topology of domains in complex manifolds with the topology of Dolbeault cohomology groups. Regularity of the solutions to the Cauchy-Riemann equations are related to the foliation theory on the boundary. The study of several complex variables in a geometric setting has provided interesting new questions with fresh insight to problems in topology, foliation theory, complex dynamics, algebraic and complex geometry. The solution of these questions will advance our knowledge in all the aforementioned areas. Complex geometric theory has only just begun to develop and more efforts will be directed in this direction. Geometric measure theory and harmonic analysis will also be applied to study several com- plex variables on non-smooth domains. These problems are at the intersection of analysis, geometry and topology with applications in applied mathematics and physics.
一元和多元复变分析在数学和数学物理中占有中心地位。复数的使用在数学的发展中是必不可少的。例如,复分析中的相位概念通常用于控制理论,图像分析和动力系统。物理学中的某些重要结构源于复分析与偏微分方程的结合。偏微分方程和几个复变量也被用于String和Twister数学物理理论,试图统一不同的物理力场。对于所有这些应用程序,关于在某些几何约束下解决此类偏微分方程的基本问题仍然没有完全理解,它们形成了数学中最具挑战性的问题。目前的研究不仅对数学的发展很重要,而且可能会导致对物理现象的新理解,并在其他科学和技术中有潜在的应用。本研究将集中在一些最重要的方程在多个复变量,包括柯西-黎曼方程和诱导切向柯西-黎曼方程。本文讨论的问题包括复流形上的函数论、Dolbeault上同调群的Hausdorff性质、Levi平坦超曲面与复叶状、复射影空间上的Cauchy-Riemann算子以及负曲流形。理解这些方程在曲率条件下的几何性质及其与复流形中函数论的关系是复分析和几何中最具挑战性和最重要的问题之一。新的研究方法将复流形中整环的拓扑与Dolbeault上同调群的拓扑联系起来。Cauchy-Riemann方程解的正则性与边界上的叶理理论有关。在几何环境中的几个复变量的研究提供了有趣的新问题,具有新的见解,拓扑学,叶理理论,复杂的动力学,代数和复杂的几何问题。这些问题的解决将促进我们在所有上述领域的知识。复几何理论才刚刚开始发展,更多的努力将指向这个方向。几何测度理论和调和分析也将用于研究非光滑区域上的几个复杂变量。这些问题处于分析、几何和拓扑学与应用数学和物理学应用的交叉点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mei-Chi Shaw其他文献

Local existence theorems with estimates for ∂b on weakly pseudo-convex CR manifolds
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
L 2 existence theorems for the $$\bar \partial _b - Neumann$$ problem on strongly pseudoconvex CR manifoldsproblem on strongly pseudoconvex CR manifolds
  • DOI:
    10.1007/bf02938117
  • 发表时间:
    1991-06-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
L2 estimates and existence theorems for the tangential Cauchy-Riemann complex
  • DOI:
    10.1007/bf01394783
  • 发表时间:
    1985-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
Local existence theorems with estimates for $$\bar \partial _b $$ on weakly pseudo-convex CR manifolds
  • DOI:
    10.1007/bf01934348
  • 发表时间:
    1992-12
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
$C^\infty$ -regularity of solutions of the tangential CR-equations on weakly pseudoconvex manifolds
  • DOI:
    10.1007/s002080050181
  • 发表时间:
    1998-05-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Joachim Michel;Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw

Mei-Chi Shaw的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mei-Chi Shaw', 18)}}的其他基金

Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1954347
  • 财政年份:
    2020
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Conference on Complex Geometry and Several Complex Variables
复杂几何与多复变量会议
  • 批准号:
    1800478
  • 财政年份:
    2018
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1700003
  • 财政年份:
    2017
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
INTERNATIONAL CONFERENCE ON NEVANLINNA THEORY and COMPLEX GEOMETRY
NEVANLINNA 理论和复杂几何国际会议
  • 批准号:
    1142200
  • 财政年份:
    2012
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Several Complex Variables
偏微分方程和多个复变量
  • 批准号:
    1101415
  • 财政年份:
    2011
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0801200
  • 财政年份:
    2008
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0500672
  • 财政年份:
    2005
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0100492
  • 财政年份:
    2001
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Several Complex Variables
偏微分方程和多个复变量
  • 批准号:
    9801091
  • 财政年份:
    1998
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations and Several Complex Variables
数学科学:偏微分方程和多个复变量
  • 批准号:
    9424122
  • 财政年份:
    1995
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了