Statistical Inference for Temporally Dependent Functional Data

时间相关函数数据的统计推断

基本信息

  • 批准号:
    1104545
  • 负责人:
  • 金额:
    $ 31.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

The PI develops a systematic body of methods and related theory on inference of temporally dependent functional data. The basic tool is the self-normalization (SN), a new studentizing technique developed recently in the univariate time series setting. The PI proposes to advance new SN-based methods in functional setup and develop (i) a class of SN-based test statistics to test for a change point in the mean function and dependent structure of weakly dependent functional data; (ii) a class of SN-based test statistics to test for white noise in Hilbert space and effective diagnostic checking tools for the AR(1) model in functional space; (iii) new SN-based tests in the two sample setup. The tests can be used to check if the two possibly dependent functional time series have the same mean and/or autocovariance structure. In this proposal, the SN is the foundation on which the body of connected and systematic inference methods for temporally dependent functional data is built.The proposal is motivated by ongoing collaboration with atmospheric scientists on statistical assessment of properties of numerical model outputs as compared to real observations. To study climate change, which is one of the most urgent problems facing the world this century, scientists have relied primarily on climate projections from numerical climate models.  There is currently a major interest to study how different the numerical model outputs are from real observations and the characterization of their difference. Analyzing these data are quite challenging because they are massive and highly complex with intricate spatial-temporal dependence. The SN-based inference methods that the PI develops in this proposal address these issues. With the assistance of functional principal component analysis, the SN-based methods are able to handle massive data sets with dependence, because the methods automatically take the unknown weak dependence into account, do not involve the choice of any tuning parameters (so are quite efficient computationally),   and are very straightforward to implement with asymptotically pivotal limiting distributions. A direct application of the SN-based methods to climate data is expected to help atmospheric scientists gain a better understanding of the ability of numerical model outputs in mimicking real observations.  In addition, the proposed methods will have broad direct applications to data that are obtained from very precise measurements at fine temporal scales which frequently  arise in engineering, physical science and finance. On the educational front, the PI will develop new advanced topic courses, mentor undergraduate and graduate students and expose them to the state-of-the-art research in this project.
PI开发了一套系统的方法和相关理论来推断时间相关的功能数据。的基本工具是自规范化(SN),最近在单变量时间序列设置中开发的一种新的学生化技术。PI建议在函数设置中推进新的基于SN的方法,并开发(i)一类基于SN的测试统计量,以测试弱相关函数数据的均值函数和相关结构中的变点;(ii)一类基于SN的测试统计量,以测试Hilbert空间中的白色噪声和函数空间中AR(1)模型的有效诊断检查工具;(iii)在双样本设置中的新的基于SN的测试。检验可用于检查两个可能相关的函数时间序列是否具有相同的均值和/或自协方差结构。在这个建议中,SN是连接和系统的推理方法的时间依赖的功能data.The建议是由正在进行的合作与大气科学家的数值模式输出的属性相比,真实的观测的统计评估的基础上建立的身体。气候变化是本世纪世界面临的最紧迫的问题之一,科学家们主要依靠数值气候模式的气候预测来研究气候变化。目前,研究数值模式输出与真实的观测结果之间的差异以及差异的特征是一个主要的兴趣。分析这些数据是相当具有挑战性的,因为它们是巨大的,高度复杂的复杂的时空依赖性。PI在本提案中开发的基于SN的推理方法解决了这些问题。在函数主成分分析的辅助下,基于SN的方法能够处理具有相关性的海量数据集,因为该方法自动考虑了未知的弱相关性,不涉及任何调整参数的选择(因此计算效率相当高), 并且非常直接地实现渐近枢轴极限分布。将基于SN的方法直接应用于气候数据,将有助于大气科学家更好地理解数值模式输出在模拟真实的观测结果方面的能力,此外,所提出的方法将广泛地直接应用于工程、物理科学和金融领域经常出现的精细时间尺度上的非常精确的测量数据。在教育方面,PI将开发新的高级主题课程,指导本科生和研究生,并让他们接触该项目中最先进的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaofeng Shao其他文献

LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES
非线性过程分数阶积分的局部Whittle估计
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Xiaofeng Shao;W. Wu
  • 通讯作者:
    W. Wu
英語圏における批判地図学の成立過程と研究動向
英语世界批判制图学的形成过程及研究动态
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    明石郁哉;Xiaofeng Shao;田中雅大
  • 通讯作者:
    田中雅大
TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS
  • DOI:
    10.1017/s0266466610000253
  • 发表时间:
    2010-08
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao
ON SELF‐NORMALIZATION FOR CENSORED DEPENDENT DATA
关于审查相关数据的自标准化
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinxiao Huang;S. Volgushev;Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao
19世紀末フランスにおける日本古典文学の受容――『源氏物語』と和歌を中心に――
19世纪末法国日本古典文学的接受——以《源氏物语》与和歌诗为中心
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    明石郁哉;Xiaofeng Shao;田中雅大;常田槙子
  • 通讯作者:
    常田槙子

Xiaofeng Shao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaofeng Shao', 18)}}的其他基金

Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
  • 批准号:
    2210002
  • 财政年份:
    2022
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Segmentation of Time Series via Self-Normalization
协作研究:通过自我归一化对时间序列进行分割
  • 批准号:
    2014018
  • 财政年份:
    2020
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Standard Grant
Statistical Inference for High-Dimensional Time Series
高维时间序列的统计推断
  • 批准号:
    1807023
  • 财政年份:
    2018
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Continuing Grant
Group-Specific Individualized Modeling and Recommender Systems for Large-Scale Complex Data
针对大规模复杂数据的特定群体个性化建模和推荐系统
  • 批准号:
    1613190
  • 财政年份:
    2016
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics
协作研究:使用新的依赖性度量对功能和高维数据进行统计推断
  • 批准号:
    1607489
  • 财政年份:
    2016
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Standard Grant
Statistical Modeling, Adjustment and Inference for Seasonal Time Series
季节性时间序列的统计建模、调整和推断
  • 批准号:
    1407037
  • 财政年份:
    2014
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Standard Grant
Statistical Inference for Long Memory and Nonlinear Time Series
长记忆和非线性时间序列的统计推断
  • 批准号:
    0804937
  • 财政年份:
    2008
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Continuing Grant

相似海外基金

Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Continuing Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Continuing Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
  • 批准号:
    BB/Y51388X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Research Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
  • 批准号:
    2336886
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Standard Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 31.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了