Statistical Inference for Long Memory and Nonlinear Time Series
长记忆和非线性时间序列的统计推断
基本信息
- 批准号:0804937
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal aims to develop methodological and theoretical tools for statistical inference of long memory and/or nonlinear time series, for which the traditional methods and theory developed for linear ARMA-type series are not known to be applicable. Since the applications of long memory and nonlinear models are rapidly growing, there is an urgent and crucial need to either provide a theoretical justification for existing methods or propose novel methods that are able to accommodate long memory and nonlinear features. To meet this need, the investigator proposes to study the following research problems: confidence interval for spectral means and ratio statistics; Whittle estimation and diagnostic checking for fractionally integrated time series with uncorrelated but dependent errors; new tests of independence and non-correlations between two stationary time series; frequency domain semiparametric inference for bivariate fractionally integrated nonlinear time series. All of them are linked to the second order properties of the long/short time series with nonlinear features, and together, they cover a wide spectrum of important inference issues for such series.Time series with long memory and nonlinearities occur in various fields, including atmosphere science, environmental science, geophysics, hydrology, economics, finance and others. This work will greatly enhance the available methodologies and theories, provide more tools and have potential applications in all such fields. The proposed research has significant impact on education through involvement of Ph.D students directly in the proposed research and incorporation of results into graduate statistical courses.
该建议旨在开发用于长记忆和/或非线性时间序列的统计推断的方法和理论工具,而为线性ARMA类型序列开发的传统方法和理论对此并不适用。随着长记忆和非线性模型应用的迅速发展,迫切需要为现有方法提供理论依据,或者提出能够适应长记忆和非线性特征的新方法。为了满足这一需要,研究者建议研究以下问题:谱均值和比率统计量的可信区间;具有不相关但相依误差的分数次积分时间序列的白估计和诊断检验;两个平稳时间序列之间独立性和非相关性的新检验;二元分数次积分非线性时间序列的频域半参数推断。它们都与具有非线性特征的长/短时间序列的二阶性质相联系,共同涵盖了这类序列的一系列重要推断问题。具有长记忆和非线性的时间序列广泛存在于大气科学、环境科学、地球物理、水文、经济、金融等各个领域。这项工作将极大地加强现有的方法和理论,提供更多的工具,并在所有这些领域都有潜在的应用。拟议的研究通过让博士生直接参与拟议的研究并将结果纳入研究生统计课程,对教育产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Shao其他文献
TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS
- DOI:
10.1017/s0266466610000253 - 发表时间:
2010-08 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES
非线性过程分数阶积分的局部Whittle估计
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao;W. Wu - 通讯作者:
W. Wu
ON SELF‐NORMALIZATION FOR CENSORED DEPENDENT DATA
关于审查相关数据的自标准化
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yinxiao Huang;S. Volgushev;Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
19世紀末フランスにおける日本古典文学の受容――『源氏物語』と和歌を中心に――
19世纪末法国日本古典文学的接受——以《源氏物语》与和歌诗为中心
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
明石郁哉;Xiaofeng Shao;田中雅大;常田槙子 - 通讯作者:
常田槙子
Xiaofeng Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Shao', 18)}}的其他基金
Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
- 批准号:
2210002 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Segmentation of Time Series via Self-Normalization
协作研究:通过自我归一化对时间序列进行分割
- 批准号:
2014018 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Statistical Inference for High-Dimensional Time Series
高维时间序列的统计推断
- 批准号:
1807023 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Group-Specific Individualized Modeling and Recommender Systems for Large-Scale Complex Data
针对大规模复杂数据的特定群体个性化建模和推荐系统
- 批准号:
1613190 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics
协作研究:使用新的依赖性度量对功能和高维数据进行统计推断
- 批准号:
1607489 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Statistical Modeling, Adjustment and Inference for Seasonal Time Series
季节性时间序列的统计建模、调整和推断
- 批准号:
1407037 - 财政年份:2014
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Statistical Inference for Temporally Dependent Functional Data
时间相关函数数据的统计推断
- 批准号:
1104545 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似海外基金
The effect of structural changes to inference in long-memory time series
结构变化对长记忆时间序列推理的影响
- 批准号:
258395632 - 财政年份:2014
- 资助金额:
$ 7.5万 - 项目类别:
Research Grants
Semi-parametric bootstrap-based inference in long-memory models
长记忆模型中基于半参数引导的推理
- 批准号:
DP120102344 - 财政年份:2012
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Projects
Statistical Inference on Long-Memory Time Series and its Applications to Economic Data
长记忆时间序列的统计推断及其在经济数据中的应用
- 批准号:
23730209 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Statistical inference for tail index and long-memory parameters
尾部索引和长记忆参数的统计推断
- 批准号:
165505095 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Research Grants
CEDAR: Statistical Inference of Solar Cycle Signatures and Long Term Trends in Mesospheric Temperature Observations
CEDAR:太阳周期特征的统计推断和中层温度观测的长期趋势
- 批准号:
0960904 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Extremes: Short and Long-Range Dependence; Modeling and Inference with Applications to Computer Networks and Risk Analysis
极端情况:短期和长期依赖性;
- 批准号:
0806094 - 财政年份:2008
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CEDAR: Statistical Inference of Solar Cycle Signatures and Long Term Trends in Mesospheric Temperature Observations
CEDAR:太阳周期特征的统计推断和中层温度观测的长期趋势
- 批准号:
0535462 - 财政年份:2006
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Statistical Inference for causal measures of long-memory cointegrated tme-series
长记忆协整时间序列因果测量的统计推断
- 批准号:
13630025 - 财政年份:2001
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inference in Heteroscedastic Nonlinear Time Series Under Long Memory With Applications to Finance
长记忆下异方差非线性时间序列的推理及其在金融中的应用
- 批准号:
0071619 - 财政年份:2000
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Inference for stochastic processes with long range dependence, recursive estimation for some non-linear non-gaussian processes
具有长程依赖性的随机过程的推理,某些非线性非高斯过程的递归估计
- 批准号:
42983-1995 - 财政年份:1998
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




