Group-Specific Individualized Modeling and Recommender Systems for Large-Scale Complex Data
针对大规模复杂数据的特定群体个性化建模和推荐系统
基本信息
- 批准号:1613190
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to develop new statistical theory, methods, and computing algorithms to solve practical problems where the data present unique features such as large volume, large velocity of dynamic changes, and highly heterogeneous information from different individuals. The traditional one-model-fits-all paradigm may not have sufficient power to detect important predictors for heterogeneous subgroups. This research aims to develop alternative methods applicable to electronic health record data and valuable for assigning effective personalized treatments for more effective medical care. It is anticipated that the project will stimulate interdisciplinary collaborations with other scientists from disparate fields and that the work will also have applications in marketing, business, and financial services. The software under development will be disseminated to facilitate applications for large-scale complex data, and will be made available to industry in a timely manner to maximize the impact on society. Training of graduate students through involvement in the research is a part of this project. This project aims to develop a new collaborative filtering method utilizing cluster information from users and items to provide more efficient recommender systems. The research also targets the development of personalized variable selection, while improving the estimation efficiency of the personalized variable coefficients and the prediction power. In addition, a mixed-effects estimating equation approach will be developed to reduce the estimation bias for informative missing data. Another research goal is to develop efficient computational algorithms and tools applicable for large-scale complex data. Each component of the research plan contains a range of topics, from methodological and computational development to applications in real world problems. In addition, the project will help to tackle fundamental questions in statistical science and will stimulate interest from large groups of scientists in the fields of recommender systems, random effects modeling, high-dimensional model selection, subgrouping and clustering, longitudinal/correlated data, informative missing data, and refreshment sampling. The development of advanced optimization techniques, algorithms, and computational technology will be valuable for other types of complex data problems as well.
该研究项目旨在开发新的统计理论,方法和计算算法,以解决实际问题,其中数据呈现出独特的特征,如大容量,动态变化速度快,以及来自不同个体的高度异构信息。传统的一个模型适合所有的范例可能没有足够的权力,以检测重要的预测异质亚组。本研究旨在开发适用于电子健康记录数据的替代方法,并为更有效的医疗保健分配有效的个性化治疗。预计该项目将促进与来自不同领域的其他科学家的跨学科合作,这项工作也将在市场营销,商业和金融服务中得到应用。正在开发的软件将予以传播,以促进大规模复杂数据的应用,并将及时提供给工业界,以最大限度地扩大对社会的影响。通过参与研究培训研究生是该项目的一部分。本计画旨在发展一种新的协同过滤方法,利用来自使用者与项目的丛集资讯来提供更有效率的推荐系统。 研究还针对个性化变量选择的发展,同时提高个性化变量系数的估计效率和预测能力。此外,将开发混合效应估计方程方法,以减少信息缺失数据的估计偏倚。另一个研究目标是开发适用于大规模复杂数据的高效计算算法和工具。研究计划的每个组成部分都包含一系列主题,从方法和计算发展到真实的世界问题的应用。此外,该项目将有助于解决统计科学中的基本问题,并将激发大量科学家对推荐系统,随机效应建模,高维模型选择,分组和聚类,纵向/相关数据,信息缺失数据和刷新采样等领域的兴趣。 先进的优化技术、算法和计算技术的发展对其他类型的复杂数据问题也很有价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Shao其他文献
TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS
- DOI:
10.1017/s0266466610000253 - 发表时间:
2010-08 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES
非线性过程分数阶积分的局部Whittle估计
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao;W. Wu - 通讯作者:
W. Wu
ON SELF‐NORMALIZATION FOR CENSORED DEPENDENT DATA
关于审查相关数据的自标准化
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yinxiao Huang;S. Volgushev;Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
19世紀末フランスにおける日本古典文学の受容――『源氏物語』と和歌を中心に――
19世纪末法国日本古典文学的接受——以《源氏物语》与和歌诗为中心
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
明石郁哉;Xiaofeng Shao;田中雅大;常田槙子 - 通讯作者:
常田槙子
Xiaofeng Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Shao', 18)}}的其他基金
Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
- 批准号:
2210002 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Segmentation of Time Series via Self-Normalization
协作研究:通过自我归一化对时间序列进行分割
- 批准号:
2014018 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Statistical Inference for High-Dimensional Time Series
高维时间序列的统计推断
- 批准号:
1807023 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics
协作研究:使用新的依赖性度量对功能和高维数据进行统计推断
- 批准号:
1607489 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Statistical Modeling, Adjustment and Inference for Seasonal Time Series
季节性时间序列的统计建模、调整和推断
- 批准号:
1407037 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Statistical Inference for Temporally Dependent Functional Data
时间相关函数数据的统计推断
- 批准号:
1104545 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Statistical Inference for Long Memory and Nonlinear Time Series
长记忆和非线性时间序列的统计推断
- 批准号:
0804937 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
- 批准号:31902373
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
- 批准号:
2305325 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship Award
A new vascular regenerative therapy for myocardial ischemia using intergin-specific circulating monocytes
使用intergin特异性循环单核细胞治疗心肌缺血的新血管再生疗法
- 批准号:
24K19425 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
- 批准号:
EP/Y002121/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Sex-specific fitness landscapes in the evolution of egg-laying vs live-birth
产卵与活产进化中的性别特异性适应性景观
- 批准号:
NE/Y001672/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
- 批准号:
2337554 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Structure-Specific Fluorescence Spectroscopy to Dissect Conformational Heterogeneity in Macromolecules
职业:结构特异性荧光光谱分析大分子的构象异质性
- 批准号:
2338251 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
- 批准号:
BB/Y512564/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Training Grant
Control of human neurodevelopment by a group of hominoid-specific transposons
一组人科动物特异性转座子控制人类神经发育
- 批准号:
BB/Y000854/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
MRI-based, patient-specific 3D bone imaging for orthopaedic surgery planning
基于 MRI 的患者特异性 3D 骨成像,用于骨科手术规划
- 批准号:
10106117 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Launchpad