Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics

协作研究:使用新的依赖性度量对功能和高维数据进行统计推断

基本信息

  • 批准号:
    1607489
  • 负责人:
  • 金额:
    $ 18.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Due to the rapid development of information technologies and their applications in many scientific fields such as climate science, medical imaging, and finance, statistical analysis of high-dimensional data and infinite-dimensional functional data has become increasingly important. A key challenge associated with the analysis of such big data is how to measure and infer complex dependence structure, which is a fundamental step in statistics and becomes more difficult owing to the data's high dimensionality and huge size. The main goal of this research project is to develop new dependence measures for quantifying dependence of large scale data sets such as temporally dependent functional data and high dimensional data, and utilize these new measures to develop novel statistical tools for conducting sparse principal component analysis, dimensional reduction, and simultaneous hypothesis testing. Building on the new dependence metrics that can capture nonlinear and non-monotonic dependence, the methodologies under development are expected to lead to more accurate prediction and inference, as well as more effective dimension reduction in the analysis of functional and high dimensional data. The research consists of three projects addressing different challenges in the analysis of functional and high dimensional data. In Project 1, the investigators introduce a new operator-valued quantity to characterize the conditional mean (in)dependence of one function-valued random element given another, and apply the newly developed dependent metrics to do dimension reduction for functional time series under a new framework of finite dimensional functional data. In Project 2, the investigators explore a new dimension reduction framework for regression models with high dimensional response, which requires less stringent linear model assumptions and is more flexible in terms of capturing possible nonlinear dependence between the response and the covariates. In Project 3, the investigators develop new tests for the mutual independence of high dimensional data via distance covariance and rank distance covariance using both sum of squares and maximum type test statistics. Overall, the three lines of research are all related to big data, and they touch upon various aspects of modern statistics; the project aims to push the current frontiers in areas including sparse principal component analysis, inference for dependent functional data, and high dimensional multivariate analysis to another level.
由于信息技术的快速发展及其在气候科学、医学影像、金融等众多科学领域的应用,高维数据和无限维函数数据的统计分析变得越来越重要。与此类大数据分析相关的一个关键挑战是如何测量和推断复杂的依赖结构,这是统计学的基本步骤,并且由于数据的高维度和巨大的规模而变得更加困难。该研究项目的主要目标是开发新的相关性度量,用于量化大规模数据集(例如时间相关函数数据和高维数据)的相关性,并利用这些新度量开发新颖的统计工具,以进行稀疏主成分分析、降维和同时假设检验。基于可以捕获非线性和非单调依赖性的新依赖性度量,正在开发的方法预计将带来更准确的预测和推理,以及在功能和高维数据分析中更有效的降维。该研究由三个项目组成,旨在解决功能数据和高维数据分析中的不同挑战。在项目1中,研究人员引入了一种新的算子值量来表征一个函数值随机元素对另一个函数值的条件均值(in)依赖性,并应用新开发的相关度量在有限维函数数据的新框架下对函数时间序列进行降维。在项目2中,研究人员探索了一种新的高维响应回归模型降维框架,该框架需要不太严格的线性模型假设,并且在捕获响应和协变量之间可能的非线性依赖性方面更加灵活。在项目 3 中,研究人员使用平方和和最大类型检验统计量,通过距离协方差和等级距离协方差开发了高维数据相互独立性的新检验。总体而言,这三个研究方向都与大数据相关,并且涉及现代统计学的各个方面;该项目旨在将稀疏主成分分析、相关函数数据推理和高维多元分析等领域的当前前沿推向另一个水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaofeng Shao其他文献

LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES
非线性过程分数阶积分的局部Whittle估计
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Xiaofeng Shao;W. Wu
  • 通讯作者:
    W. Wu
英語圏における批判地図学の成立過程と研究動向
英语世界批判制图学的形成过程及研究动态
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    明石郁哉;Xiaofeng Shao;田中雅大
  • 通讯作者:
    田中雅大
TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS
  • DOI:
    10.1017/s0266466610000253
  • 发表时间:
    2010-08
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao
ON SELF‐NORMALIZATION FOR CENSORED DEPENDENT DATA
关于审查相关数据的自标准化
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinxiao Huang;S. Volgushev;Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao
19世紀末フランスにおける日本古典文学の受容――『源氏物語』と和歌を中心に――
19世纪末法国日本古典文学的接受——以《源氏物语》与和歌诗为中心
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    明石郁哉;Xiaofeng Shao;田中雅大;常田槙子
  • 通讯作者:
    常田槙子

Xiaofeng Shao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaofeng Shao', 18)}}的其他基金

Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
  • 批准号:
    2210002
  • 财政年份:
    2022
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Segmentation of Time Series via Self-Normalization
协作研究:通过自我归一化对时间序列进行分割
  • 批准号:
    2014018
  • 财政年份:
    2020
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Statistical Inference for High-Dimensional Time Series
高维时间序列的统计推断
  • 批准号:
    1807023
  • 财政年份:
    2018
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Group-Specific Individualized Modeling and Recommender Systems for Large-Scale Complex Data
针对大规模复杂数据的特定群体个性化建模和推荐系统
  • 批准号:
    1613190
  • 财政年份:
    2016
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Statistical Modeling, Adjustment and Inference for Seasonal Time Series
季节性时间序列的统计建模、调整和推断
  • 批准号:
    1407037
  • 财政年份:
    2014
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Statistical Inference for Temporally Dependent Functional Data
时间相关函数数据的统计推断
  • 批准号:
    1104545
  • 财政年份:
    2011
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Statistical Inference for Long Memory and Nonlinear Time Series
长记忆和非线性时间序列的统计推断
  • 批准号:
    0804937
  • 财政年份:
    2008
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了