Statistical Inference for High-Dimensional Time Series
高维时间序列的统计推断
基本信息
- 批准号:1807023
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to the rapid development of information technologies and their applications in many scientific fields, high dimensional time series (HDTS) are routinely collected nowadays. The methods and theory developed for the inference of low and fixed dimensional time series may not be applicable when the dimension is comparable to or exceeds time series length, and there is an urgent need to develop new statistical methods that can accommodate both high dimensionality and temporal dependence. Statistical inference for HDTS is fundamentally important and has many applications in disciplines ranging from climate science to medical imaging and finance, among others.This project aims to develop innovative theory and methodologies to address several important inference problems in the analysis of HDTS. The research is built on the self-normalized approach, which has found great success in dealing with low dimensional problems. Its advance to the high dimensional context is challenging both methodologically and theoretically, and it requires a new methodological formulation and new theory. This project covers the inference of the mean, covariance matrix, and auto-covariance matrix for HDTS, and the tests developed can be used to detect change points, certain structure of the covariance matrix and target dense alternative. On the theoretical front, the weak convergence of sequential U-statistic based process will be investigated and is of independent interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着信息技术的快速发展及其在许多科学领域的应用,高维时间序列(HDTS)已成为一种常规的数据采集方法。对于低维和固定维时间序列的推断方法和理论,当维度与时间序列长度相当或超过时间序列长度时,可能不适用,迫切需要开发既能适应高维又能适应时间依赖性的新的统计方法。HDTS的统计推断至关重要,在从气候科学到医学成像和金融等学科中有许多应用。本项目旨在发展创新的理论和方法,以解决HDTS分析中的几个重要推理问题。该研究建立在自归一化方法的基础上,该方法在处理低维问题方面取得了巨大成功。它向高维语境的推进在方法论和理论上都具有挑战性,需要新的方法论制定和新的理论。本项目涵盖了HDTS的均值、协方差矩阵和自协方差矩阵的推理,所开发的测试可用于检测变点、协方差矩阵的某些结构和目标密集替代。在理论方面,基于顺序u统计量的过程的弱收敛性将被研究,这是一个独立的兴趣。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypothesis testing for high-dimensional time series via self-normalization
通过自归一化对高维时间序列进行假设检验
- DOI:10.1214/19-aos1904
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Wang, Runmin;Shao, Xiaofeng
- 通讯作者:Shao, Xiaofeng
Interpoint distance based two sample tests in high dimension
- DOI:10.3150/20-bej1270
- 发表时间:2019-02
- 期刊:
- 影响因子:1.5
- 作者:Changbo Zhu;Xiaofeng Shao
- 通讯作者:Changbo Zhu;Xiaofeng Shao
Distance-based and RKHS-based dependence metrics in high dimension
- DOI:10.1214/19-aos1934
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Changbo Zhu;Shu Yao;Xianyang Zhang;Xiaofeng Shao
- 通讯作者:Changbo Zhu;Shu Yao;Xianyang Zhang;Xiaofeng Shao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Shao其他文献
TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS
- DOI:
10.1017/s0266466610000253 - 发表时间:
2010-08 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES
非线性过程分数阶积分的局部Whittle估计
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao;W. Wu - 通讯作者:
W. Wu
ON SELF‐NORMALIZATION FOR CENSORED DEPENDENT DATA
关于审查相关数据的自标准化
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yinxiao Huang;S. Volgushev;Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
19世紀末フランスにおける日本古典文学の受容――『源氏物語』と和歌を中心に――
19世纪末法国日本古典文学的接受——以《源氏物语》与和歌诗为中心
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
明石郁哉;Xiaofeng Shao;田中雅大;常田槙子 - 通讯作者:
常田槙子
Xiaofeng Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Shao', 18)}}的其他基金
Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
- 批准号:
2210002 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Segmentation of Time Series via Self-Normalization
协作研究:通过自我归一化对时间序列进行分割
- 批准号:
2014018 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Group-Specific Individualized Modeling and Recommender Systems for Large-Scale Complex Data
针对大规模复杂数据的特定群体个性化建模和推荐系统
- 批准号:
1613190 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics
协作研究:使用新的依赖性度量对功能和高维数据进行统计推断
- 批准号:
1607489 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Statistical Modeling, Adjustment and Inference for Seasonal Time Series
季节性时间序列的统计建模、调整和推断
- 批准号:
1407037 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Statistical Inference for Temporally Dependent Functional Data
时间相关函数数据的统计推断
- 批准号:
1104545 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Statistical Inference for Long Memory and Nonlinear Time Series
长记忆和非线性时间序列的统计推断
- 批准号:
0804937 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Statistical learning and causal inference in high-dimensional genomics data across multiple information layers
跨多个信息层的高维基因组数据的统计学习和因果推理
- 批准号:
DGECR-2022-00445 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Launch Supplement
Statistical learning and causal inference in high-dimensional genomics data across multiple information layers
跨多个信息层的高维基因组数据的统计学习和因果推理
- 批准号:
RGPIN-2022-03708 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
- 批准号:
RGPIN-2017-05720 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
- 批准号:
2113779 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
- 批准号:
2113778 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
- 批准号:
RGPIN-2016-06262 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
- 批准号:
RGPIN-2017-05720 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




