Statistical Modeling, Adjustment and Inference for Seasonal Time Series

季节性时间序列的统计建模、调整和推断

基本信息

  • 批准号:
    1407037
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This project studies novel inference procedures and models for seasonal time series. The results of this research will have direct impact on the diagnostics of seasonal adjustment procedures that are currently implemented at the U.S. Census Bureau and other domestic or foreign agencies where seasonal adjustments are routinely published. The "Visual Significance" method used at the Census Bureau lacks a rigorous statistical justification and the new spectral peak detection methods will help to quantify type I and II errors in a disciplined fashion for a wide class of processes. Although motivated by research problems at Census, the new methodology and models are expected to be useful in the analysis of time series from various disciplines, including economics, astronomy, environmental science, and atmospheric sciences, among others.Specifically, the project consists of three interrelated parts. In the first part, the PI will develop two new methods of spectral peak detection, which are intended to provide more principled approaches to the "Visual Significance" method used at the U.S. Census Bureau. In the second part, the PI will address the band-limited goodness-of-fit testing using the integral of the square of the normalized periodogram. Instead of assuming the strong Gaussian-like assumption as done in the literature, the PI will use a new Studentizer, so that the limiting distribution of the self-normalization-based test statistic is pivotal under less stringent assumptions. In the third part, the PI will study a new parametric class of spectral density, which can be used in model-based seasonal adjustment to improve the quality of model fitting and seasonal adjustment. The new parametric models and related model-based seasonal adjustment, if successfully developed, may offer a more effective means of modeling and adjusting time series. The research will promote teaching and training through mentoring of undergraduate and graduate students and through the development of related lecture notes.
本计画研究季节性时间序列的新推论程序与模型。这项研究的结果将直接影响目前在美国人口普查局和其他定期公布季节调整的国内外机构实施的季节调整程序的诊断。人口普查局使用的“视觉显著性”方法缺乏严格的统计依据,新的光谱峰值检测方法将有助于以有纪律的方式量化I型和II型误差。虽然是受Census研究问题的启发,但新的方法和模型预计将有助于分析经济学、天文学、环境科学和大气科学等不同学科的时间序列。具体而言,该项目由三个相互关联的部分组成。在第一部分中,PI将开发两种新的光谱峰值检测方法,旨在为美国人口普查局使用的“视觉显著性”方法提供更有原则的方法。在第二部分中,PI将使用归一化周期图的平方积分来解决带限拟合优度检验。PI将使用新的Studentizer,而不是像文献中那样假设强高斯假设,因此基于自归一化的检验统计量的极限分布在不太严格的假设下是关键的。在第三部分中,PI将研究一种新的谱密度参数类,它可以用于基于模型的季节调整,以提高模型拟合和季节调整的质量。新的参数模型和相关的基于模型的季节性调整,如果开发成功,可能会提供一个更有效的建模和调整时间序列的手段。这项研究将通过对本科生和研究生的指导以及通过编写相关的讲义来促进教学和培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaofeng Shao其他文献

LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES
非线性过程分数阶积分的局部Whittle估计
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Xiaofeng Shao;W. Wu
  • 通讯作者:
    W. Wu
英語圏における批判地図学の成立過程と研究動向
英语世界批判制图学的形成过程及研究动态
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    明石郁哉;Xiaofeng Shao;田中雅大
  • 通讯作者:
    田中雅大
TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS
  • DOI:
    10.1017/s0266466610000253
  • 发表时间:
    2010-08
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao
ON SELF‐NORMALIZATION FOR CENSORED DEPENDENT DATA
关于审查相关数据的自标准化
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinxiao Huang;S. Volgushev;Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao
19世紀末フランスにおける日本古典文学の受容――『源氏物語』と和歌を中心に――
19世纪末法国日本古典文学的接受——以《源氏物语》与和歌诗为中心
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    明石郁哉;Xiaofeng Shao;田中雅大;常田槙子
  • 通讯作者:
    常田槙子

Xiaofeng Shao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaofeng Shao', 18)}}的其他基金

Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
  • 批准号:
    2210002
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Segmentation of Time Series via Self-Normalization
协作研究:通过自我归一化对时间序列进行分割
  • 批准号:
    2014018
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Statistical Inference for High-Dimensional Time Series
高维时间序列的统计推断
  • 批准号:
    1807023
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Group-Specific Individualized Modeling and Recommender Systems for Large-Scale Complex Data
针对大规模复杂数据的特定群体个性化建模和推荐系统
  • 批准号:
    1613190
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics
协作研究:使用新的依赖性度量对功能和高维数据进行统计推断
  • 批准号:
    1607489
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Statistical Inference for Temporally Dependent Functional Data
时间相关函数数据的统计推断
  • 批准号:
    1104545
  • 财政年份:
    2011
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Statistical Inference for Long Memory and Nonlinear Time Series
长记忆和非线性时间序列的统计推断
  • 批准号:
    0804937
  • 财政年份:
    2008
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
  • 批准号:
    2337322
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
  • 批准号:
    2346964
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了