Modeling and Homogenization of Magneto-Mechanical Material Behaviour at Multiple Scales
多尺度磁力机械材料行为的建模和均质化
基本信息
- 批准号:201207071
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to contribute to a better understanding of the nonlinear-dissipative nature of composite magneto-mechanically coupled materials at finite deformations. As underlying material system, magneto-rheological elastomers (MRE) will be considered. These materials are characterized by a heterogenoeus microstructure, which consists of elastomeric matrix and ferromagnetic inclusions. In order to allow for reliable material design, open problems concerning their effective response, possible instability phenomena as well as potential failure mechanisms have to be solved. Thus, the planned research project addresses (i) the determination and the optimization of effective coupling properties of magneto-machanically coupled composites, (ii) the analysis of stability phenomena at different length scales including ways of their technical exploitation, as well as (iii) possible failure mechanisms due to fracture. The overall goal is to construct a compatible hierarchy of models for the description of coupled magneto-mechanical behavior at multiple length scales, and their embedding in scale-bridging homogenization techniques. This will be elaborated by using new variational concepts for dissipative, magneto-mechanically coupled continuum formulations. To this end, we will systematically extend the geometrically linear formulations of homogenization and micromagneto-elastic domain evolution developed in the first period. The expected result of the research project is to provide theoretical and algorithmic formulations which allow for a deepened understanding of large-strain magneto-mechanical coupling rooted in microstructural morphologies. The rigorous variational formulation of geometrically nonlinear problems will yield new definitions of material and structural stability of coupled phenomena on the basis of minimization principles and associated convexity conditions. The combination of stabilityanalyses with fracture phenomena will offer a new quality in the analysis of magneto-mechanical problems for limit states. This willprovide an important methodical element for the modeling and the optimization of functional materials with magneto-mechanicalcoupling.
这个项目的目标是有助于更好地理解在有限变形的复合磁机械耦合材料的非线性耗散性质。作为底层材料系统,磁流变弹性体(MRE)将被考虑。这些材料的特征在于由弹性体基体和铁磁性夹杂物组成的异质微观结构。为了实现可靠的材料设计,必须解决有关其有效响应、可能的不稳定现象以及潜在失效机制的开放问题。因此,计划的研究项目地址(i)磁-机械耦合复合材料的有效耦合特性的确定和优化,(ii)在不同长度尺度上的稳定性现象的分析,包括其技术开发的方式,以及(iii)由于断裂可能的失效机制。我们的总体目标是构建一个兼容的层次结构的模型,用于描述耦合的磁-机械行为在多个长度尺度,并嵌入在规模桥接均匀化技术。这将通过使用新的变分概念耗散,磁-机械耦合连续制剂。为此,我们将系统地扩展几何线性配方的均匀化和微磁弹性域的演变,在第一阶段。该研究项目的预期结果是提供理论和算法公式,从而加深对植根于微观结构形态的大应变磁-机械耦合的理解。几何非线性问题的严格变分公式将产生新的定义的材料和结构的稳定性耦合现象的最小化原则和相关的凸性条件的基础上。稳定性分析与断裂现象的结合将为极限状态下的磁力学问题的分析提供一种新的性质。这将为磁-力耦合功能材料的建模和优化提供重要的方法基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Marc-André Keip, since 10/2016其他文献
Professor Dr.-Ing. Marc-André Keip, since 10/2016的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Marc-André Keip, since 10/2016', 18)}}的其他基金
Thermo-Chemo-Mechanics and Failure of Electrode Particles in Lithium-Ion Batteries
锂离子电池中电极颗粒的热化学力学和失效
- 批准号:
273719395 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
- 批准号:
EP/W022923/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
- 批准号:
22K14142 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
A spatiotemporal data-driven homogenization approach for hierarchical modeling of multiphase frozen soil in permafrost
时空数据驱动的多年冻土多相冻土分层建模方法
- 批准号:
RGPIN-2019-06471 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
- 批准号:
22K20331 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains
穿孔域椭圆方程的调和分析与齐次化
- 批准号:
2153585 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Homogenization in Anomalous Diffusion Phenomena and its Applications to Inverse Problems
反常扩散现象的均匀化及其在反问题中的应用
- 批准号:
21K20333 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Homogenization Methods in Statistical Physics
统计物理中的均质化方法
- 批准号:
2137909 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Homogenization Methods in Statistical Physics
统计物理中的均质化方法
- 批准号:
2055226 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant