RI: Small: Addressing Visual Analogy Problems on the Raven's Intelligence Test
RI:小:解决乌鸦智力测试中的视觉类比问题
基本信息
- 批准号:1116541
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims to create purely image-based reasoning methods for solving visual analogy problems, particularly so-called Raven's Progressive Matrices (RPM) problems. The project draws on recent results from the study of human cognition as well computer science and mathematics. Raven's Progressive Matrices consist wholly of visual analogy problems in which a matrix of geometric figures is presented with one entry missing, and the correct missing entry must be selected from a set of answer choices. Recent analysis of RPM data suggests that although in general the performance of individuals with autism on most intelligence tests is significantly inferior to that of typically developing individuals, on the Raven's test the performance of the two groups is comparable. This data is consistent with the "Thinking in Pictures" hypothesis that has been proposed as a potential, partial cognitive explanation of autism. In both artificial intelligence and psychology, current theories of solving RPM problems first convert the visual inputs into verbal representations and then process the verbal representations. In contrast, this project explores the hypothesis that many RPM problems can be solved using only visual representations, without extracting any verbal representations from the input images. This project will develop and analyze computational techniques for addressing RPM problems with only visual representations. In particular, this project will develop a novel algorithm based on affine transformations for addressing RPM problems as well as a second algorithm that makes use of fractal encodings. With both approaches -- affine and fractal -- the project seeks to achieve human-level performance on RPM in terms of percentages of problems solved correctly. The two algorithms will also be tested on the "odd-man-out" corpus that contains thousands of visual analogy problems. The project will formally characterize the set of visual analogy problems for which the affine and fractal algorithms are applicable, analyze the computational properties of the algorithms, construct proofs of their correctness for specific classes of problems, and compare the errors made by the two algorithms with those made by two groups of humans -- typically developing individuals and individuals with autism. The project will parameterize the visual algorithms to detect the settings under which the patterns of errors made by an algorithm on RPM problems most closely match the error patterns of the two human groupings. Autism is an important problem of growing social concern. While the thinking-in-pictures hypothesis has long been a significant insight into cognition in autism, and empirical evidence -- both behavioral and neuroimaging -- in its favor is increasing, there have been no computational models for it. The proposed research would help provide a computational form to this hypothesis and may help establish a disposition towards visual thinking with autism. RPM is considered one of the core tests of intelligence, and although there have been several suggestions about the visuospatial nature of RPM problems, all current computational models addressing such visual analogy problems use sequential processing on propositional representations of the input images. The algorithms from this project that rely on visual representations for RPM could provide new insights into intelligence testing. Lastly, while fractal encodings have been used in computer graphics for generating images and in computer vision for texture analysis in image processing, this project's use of fractal encodings for visual analogies on intelligence tests will contribute to knowledge of fractal computing.
这项建议旨在创建纯基于图像的推理方法来解决视觉类比问题,特别是所谓的乌鸦递进矩阵(RPM)问题。该项目借鉴了人类认知以及计算机科学和数学研究的最新成果。瑞文的递进矩阵完全由视觉类比问题组成,其中一个几何图形的矩阵被呈现时缺少一个条目,并且必须从一组答案选择中选择正确的缺失条目。最近对RPM数据的分析表明,尽管总的来说,自闭症患者在大多数智力测试中的表现明显逊于正常发育的人,但在瑞文测试中,两组人的表现是相当的。这一数据与“图画思维”假说是一致的,该假说被认为是自闭症的一种潜在的、部分的认知解释。在人工智能和心理学中,现有的解决RPM问题的理论都是先将视觉输入转换为语言表征,然后再对语言表征进行处理。相反,这个项目探索了这样一个假设,即许多RPM问题可以仅使用视觉表示法来解决,而不需要从输入图像中提取任何语言表示法。这个项目将开发和分析用于解决RPM问题的计算技术,仅使用视觉表示。特别是,这个项目将开发一种基于仿射变换的新算法来解决RPM问题,以及第二种利用分形编码的算法。使用这两种方法--仿射和分形--该项目寻求在正确解决问题的百分比方面实现人类在RPM上的表现。这两种算法还将在包含数千个视觉类比问题的“奇人出局”语料库上进行测试。该项目将正式描述仿射和分形算法适用的视觉类比问题集,分析算法的计算特性,针对特定类别的问题构建其正确性的证明,并将这两种算法所犯的错误与两组人--典型的发展中的个人和患有自闭症的人--所犯的错误进行比较。该项目将对视觉算法进行参数化,以检测在何种设置下,RPM问题上的算法所产生的错误模式与两个人类分组的错误模式最接近。自闭症是一个日益受到社会关注的重要问题。虽然图画思维假说长期以来一直是对自闭症认知的重要洞察,而且支持它的经验证据--包括行为和神经成像--正在增加,但还没有针对它的计算模型。这项拟议的研究将有助于为这一假设提供一种计算形式,并可能有助于建立自闭症患者对视觉思维的倾向。RPM被认为是智力的核心测试之一,尽管已经有一些关于RPM问题的视觉空间性质的建议,但目前所有解决此类视觉类比问题的计算模型都使用对输入图像的命题表征的顺序加工。这个项目的算法依赖于RPM的视觉表示,可以为智力测试提供新的见解。最后,虽然在计算机图形学中使用了分形编码来生成图像,并在计算机视觉中用于图像处理中的纹理分析,但这个项目在智力测试中使用分形编码来进行视觉类比将有助于学习分形计算的知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashok Goel其他文献
To Compare the Clinical Efficacy and Safety of Salbutamol and Levosalbutamol Metered-Dose Inhalers in Patients of Bronchial Asthma
- DOI:
10.1378/chest.9952 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:
- 作者:
Hitender Kumar;Ashok Goel;Nirmal Chand;Bharat Bhushan;Ramesh Chander;Akshat Goel - 通讯作者:
Akshat Goel
Ashok Goel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashok Goel', 18)}}的其他基金
AI Institute for Adult Learning and Online Education (ALOE)
人工智能成人学习和在线教育研究所 (ALOE)
- 批准号:
2247790 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Cooperative Agreement
RI: Doctoral Student Consortium at the Seventh International Conference on Computational Creativity
RI:第七届国际计算创造力会议上的博士生联盟
- 批准号:
1740420 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: SOUTH: Collaborative: Using Big Data for Environmental Sustainability: Big Data + AI Technology = Accessible, Usable, Useful Knowledge!
BD 发言:发言:南方:协作:利用大数据促进环境可持续发展:大数据人工智能技术 = 可获取、可用、有用的知识!
- 批准号:
1636848 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Doctoral Student Consortium at the Twenty Fourth International Conference on Case-Based Reasoning
RI:第二十四届国际案例推理会议博士生联盟
- 批准号:
1637547 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Doctoral Student Workshop at the Third Annual Conference on Advances in Cognitive Systems
RI:第三届认知系统进展年会博士生研讨会
- 批准号:
1536084 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
I-Corps: Knowledge Access for Design Ideation in Bioinspired Invention
I-Corps:仿生发明设计理念的知识获取
- 批准号:
1546967 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
I-Corps: Information Services for Biologically Inspired Design
I-Corps:生物启发设计的信息服务
- 批准号:
1263633 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Workshop/Collaborative Research: Charting a Course for Computer-Aided Bio-inspired Design Research; Palo Alto, California; March 20, 2011
研讨会/合作研究:制定计算机辅助仿生设计研究课程;
- 批准号:
1109406 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
HCC: Doctoral Symposium at the Sixth International Conference on the Theory and Application of Diagrams
HCC:第六届国际图论与应用会议博士生研讨会
- 批准号:
1036113 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
MAJOR: Computational Tools for Enhancing Creativity in Biologically Inspired Engineering Design
专业:增强仿生工程设计创造力的计算工具
- 批准号:
0855916 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CPS: Small: Infusing Quantum Computing, Decomposition, and Learning for Addressing Cyber-Physical Systems Optimization Challenges
CPS:小型:融合量子计算、分解和学习来应对网络物理系统优化挑战
- 批准号:
2312086 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Addressing Human Factors Challenges for Control Room Operators in Small Modular Reactors
解决小型模块化反应堆控制室操作员面临的人为因素挑战
- 批准号:
580479-2022 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Alliance Grants
Passive membrane filtration: addressing drinking water quality challenges in small, rural and/or marginalized communities
被动膜过滤:解决小型、农村和/或边缘化社区的饮用水质量挑战
- 批准号:
558389-2020 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Alliance Grants
SHF: Small: Addressing Challenges for the Next Decade of Massively Parallel NUMA Accelerators
SHF:小型:应对大规模并行 NUMA 加速器未来十年的挑战
- 批准号:
1910924 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Structured Data Peer Production: Addressing Challenges and Leveraging Opportunities
CHS:小型:协作研究:结构化数据同行生产:应对挑战并利用机遇
- 批准号:
1815507 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
TWC: Small: Collaborative: The Master Print: Investigating and Addressing Vulnerabilities in Fingerprint-based Authentication Systems
TWC:小:协作:主打印:调查和解决基于指纹的身份验证系统中的漏洞
- 批准号:
1617466 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: The Master Print: Investigating and Addressing Vulnerabilities in Fingerprint-based Authentication Systems
TWC:小:协作:主打印:调查和解决基于指纹的身份验证系统中的漏洞
- 批准号:
1618750 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NeTS: Small: Addressing End-system Bottlenecks in High-speed Networks
NeTS:小型:解决高速网络中的终端系统瓶颈
- 批准号:
1528087 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
TWC: Small: Addressing the challenges of cryptocurrencies: Security, anonymity, stability
TWC:小:应对加密货币的挑战:安全性、匿名性、稳定性
- 批准号:
1421689 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NeTS: Small: Mobile mmWaves: Addressing the Cellular Capacity Crisis with 60 GHz Picocells
NeTS:小型:移动毫米波:利用 60 GHz 微微蜂窝解决蜂窝容量危机
- 批准号:
1317153 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant