SHF: Small: Hardware-Software Co-Design for Next Generation Packet Forwarding Engines

SHF:小型:下一代数据包转发引擎的软硬件协同设计

基本信息

  • 批准号:
    1116781
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The Internet backbone, including both core and edge routers, is becoming more flexible, scalable and programmable to enable future innovations in the next generation Internet. While the functionality of Internet routers evolves, the performance remains a major concern for real-life deployment. Traditionally, core routers have been designed using throughput as a key performance metric. While the throughput requirements continue to grow, peak power and total energy dissipated have emerged as additional critical considerations in the design of core routers as well as in other network equipment. Although ternary content addressable memories (TCAMs) have been widely used for packet forwarding, they have poor power performance. This work studies the use of low-power memory technology such as the static random access memory (SRAM) combined with field-programmable gate arrays (FPGAs) / application-specific integrated circuits (ASICs) to develop high-throughput and power-efficient solutions for various packet forwardingengines including IP lookup, router virtualization, packet classification and flexible flow processing (e.g., OpenFlow). Packet forwarding engines in next generation routers and switches are designed using a hardware-software co-design framework. Based on this framework, novel architectures and algorithms are developed using power (including energy) as a key performance metric in addition to throughput. Specifically, to bridge the gap between software and hardware development, high-level power-performance models for hardware implementations of packet forwarding engines are developed and validated. These models facilitate design of various heuristics for power-efficient algorithms and architectures for virtualized IP lookup, multi-field packet classification and flexible flow processing. Instead of the highly popular TCAM based solutions, this work focuses on SRAM-based parallel and pipeline architectures. Novel techniques including partitioning, clock gating, power-aware data structure design and power-aware load balancing are studied to simultaneously increase throughput and reduce power and/or energy dissipation
包括核心和边缘路由器在内的互联网骨干正变得更加灵活、可扩展和可编程,以实现下一代互联网的未来创新。虽然互联网路由器的功能不断发展,但性能仍然是实际部署的主要关注点。传统上,核心路由器的设计使用吞吐量作为关键性能指标。在吞吐量需求持续增长的同时,峰值功率和总能耗已成为核心路由器以及其他网络设备设计中的额外关键考虑因素。虽然三元内容可寻址存储器(TCAMs)被广泛用于数据包转发,但其功耗性能较差。这项工作研究了使用低功耗存储器技术,如静态随机存取存储器(SRAM)与现场可编程门阵列(fpga) /专用集成电路(asic)相结合,为各种数据包转发引擎开发高吞吐量和节能的解决方案,包括IP查找,路由器虚拟化,数据包分类和灵活的流处理(例如,OpenFlow)。下一代路由器和交换机中的包转发引擎采用软硬件协同设计框架进行设计。在此框架的基础上,除了吞吐量之外,还使用功率(包括能量)作为关键性能指标,开发了新的架构和算法。具体来说,为了弥合软件和硬件开发之间的差距,开发并验证了数据包转发引擎硬件实现的高级功率性能模型。这些模型有助于为高效节能算法和架构设计各种启发式算法,用于虚拟IP查找,多字段数据包分类和灵活的流处理。与非常流行的基于TCAM的解决方案不同,这项工作侧重于基于sram的并行和管道架构。研究了包括分区、时钟门控、功率感知数据结构设计和功率感知负载平衡在内的新技术,以同时提高吞吐量并降低功耗和/或能耗

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor Prasanna其他文献

Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna
  • 通讯作者:
    Viktor Prasanna
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
Guest Editorial: Computing Frontiers

Viktor Prasanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktor Prasanna', 18)}}的其他基金

IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
  • 批准号:
    2231662
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
  • 批准号:
    2311870
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
  • 批准号:
    2209563
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
  • 批准号:
    2104264
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
  • 批准号:
    2119816
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
  • 批准号:
    2027007
  • 财政年份:
    2020
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
  • 批准号:
    2009057
  • 财政年份:
    2020
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
  • 批准号:
    1911229
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
  • 批准号:
    1912680
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
  • 批准号:
    1643351
  • 财政年份:
    2016
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
  • 批准号:
    2310170
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SHF: Small: Software and Hardware Support for Robust Deep Learning
SHF:小型:强大深度学习的软件和硬件支持
  • 批准号:
    2301334
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SHF: Small: Improving Efficiency of Vision Transformers via Software-Hardware Co-Design and Acceleration
SHF:小型:通过软硬件协同设计和加速提高视觉变压器的效率
  • 批准号:
    2233893
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SHF: Small: A New Approach for Hardware Design of High-Precision Discrete Gaussian Sampling
SHF:小:高精度离散高斯采样硬件设计的新方法
  • 批准号:
    2146881
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
  • 批准号:
    2218845
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Software Hardware Architecture Co-Design for Enabling True Virtual Reality on Mobile Devices
合作研究:SHF:小型:软件硬件架构协同设计,在移动设备上实现真正的虚拟现实
  • 批准号:
    2215042
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Software Hardware Architecture Co-Design for Enabling True Virtual Reality on Mobile Devices
合作研究:SHF:小型:软件硬件架构协同设计,在移动设备上实现真正的虚拟现实
  • 批准号:
    2215043
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了