Collaborative Research: Automatic Behavior Monitoring for In-depth Analysis of Construction Fatalities and Injuries
合作研究:自动行为监测,深入分析施工伤亡情况
基本信息
- 批准号:1200120
- 负责人:
- 金额:$ 6.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to explore computer vision-based monitoring methods, enabling the automatic and constant observation of construction workers for in-depth safety analysis. Taking into account the fact that the number of fatalities in construction remains the highest among all industries, and that approximately 80 to 90 percent of accidents are strongly associated with workers' unsafe behavior and acts, the automatic capture and systematic understanding of unsafe behavior has great potential to contribute to the reduction and prevention of injuries and fatalities in construction. Specifically, using video and image sequences, the proposed system estimates the 2D location of a human skeleton, computes the 3D location of body joints, and identifies the worker?s unsafe motions using machine learning techniques. To investigate the feasibility and potential of the proposed methods for behavior monitoring, several representative motions in traumatic (e.g., falls) and ergonomic (e.g., overexertion and repetitive motions) injuries are tested as a case study. If successful, the findings of this research could lead to the prevention of injuries and fatalities in the construction industry by providing an in-depth understanding of human behavior and actions in terms of safety. Further, the motion analysis techniques developed in this project can be applied to diverse industries (e.g., manufacturing and shipbuilding) where labor is an important resource, providing a means to automatically collect data on human behavior and thus enabling its effective understanding. In addition, the education plan (e.g., the course that deals with understanding human behavior in safety, and the workshop planned for industry professionals and students) will provide effective education of future managers and engineers, both of whom will improve safety in the US workplace. Further, female and underrepresented students will be recruited and integrated into the planned research and education activities (e.g., safety seminars and workshops and interdisciplinary research participation opportunities).
本研究的目的是探索基于计算机视觉的监控方法,使建筑工人能够自动和持续地观察,以进行深入的安全分析。考虑到建筑业的死亡人数仍然是所有行业中最高的,而且大约80%到90%的事故与工人的不安全行为和行为密切相关,因此对不安全行为的自动捕获和系统理解对于减少和预防建筑业的伤亡具有很大的潜力。具体地说,该系统利用视频和图像序列,估计人体骨骼的2D位置,计算身体关节的3D位置,并使用机器学习技术识别工人S的不安全动作。为了探讨所提出的行为监测方法的可行性和潜力,以创伤(如跌倒)和人体工学损伤(如过度劳累和重复运动)中的几种典型动作为例进行了研究。如果成功,这项研究的发现可以通过深入了解人类在安全方面的行为和行动来预防建筑行业的伤亡。此外,在这个项目中开发的运动分析技术可以应用于劳动力是重要资源的不同行业(例如制造业和造船业),提供了一种自动收集人类行为数据的方法,从而使其能够有效地理解。此外,教育计划(例如,涉及理解人类安全行为的课程,以及为行业专业人员和学生计划的研讨会)将为未来的管理人员和工程师提供有效的教育,他们都将改善美国工作场所的安全。此外,将招募女性和任职人数不足的学生,并将其纳入计划的研究和教育活动(例如,安全研讨会和讲习班以及跨学科研究参与机会)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feniosky Pena-Mora其他文献
Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach
配电网中共享储能系统的最佳规模和运行:双层规划方法
- DOI:
10.1016/j.apenergy.2021.118170 - 发表时间:
2021-11 - 期刊:
- 影响因子:11.2
- 作者:
Mingtao Ma;Huijun Huang;Xiaoling Song;Feniosky Pena-Mora;Zhe Zhang;Jie Chen - 通讯作者:
Jie Chen
Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context
- DOI:
https://doi.org/10.1155/2021/6674980 - 发表时间:
2021 - 期刊:
- 影响因子:1.8
- 作者:
Yao Huang;Qian Shi;Jian Zuo;Feniosky Pena-Mora;Jindao Chen - 通讯作者:
Jindao Chen
Exploring the Impact of Information and Communication Technology on Team Social Capital and Construction Project Performance
探索信息和通信技术对团队社会资本和建设项目绩效的影响
- DOI:
10.1061/(asce)me.1943-5479.0000804 - 发表时间:
2020-09 - 期刊:
- 影响因子:7.4
- 作者:
Yao Huang;Qian Shi;Feniosky Pena-Mora;Yujie Lu;Charles Shen - 通讯作者:
Charles Shen
Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context
大数据背景下数据驱动的建设项目管理研究现状与挑战
- DOI:
10.1155/2021/6674980 - 发表时间:
2021-04 - 期刊:
- 影响因子:1.8
- 作者:
Yao Huang;Qian Shi;Jian Zuo;Feniosky Pena-Mora;Jindao Chen - 通讯作者:
Jindao Chen
Dynamic estimation of the fire service spatial accessibility for EV charging stations: Towards preventing severe fires and explosions
电动汽车充电站消防服务空间可达性的动态评估:预防严重火灾和爆炸
- DOI:
10.1016/j.psep.2024.12.115 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:7.800
- 作者:
Yao Huang;Dingli Liu;Jiafu Tang;Shuai Niu;Fredric M. Bell;Feniosky Pena-Mora - 通讯作者:
Feniosky Pena-Mora
Feniosky Pena-Mora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feniosky Pena-Mora', 18)}}的其他基金
Collaborative Research: Integrated Conflict, Claim, and Dispute Avoidance, Mitigation and Resolution Methodology for Large-Scale Design and Construction Projects (C2D)
协作研究:大型设计和施工项目的综合冲突、索赔和争议避免、缓解和解决方法(C2D)
- 批准号:
1047534 - 财政年份:2010
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
CRI: IAD - A Pressing Need for Observation, Facilitation and Computer Support of Group Interactions for Advancing United States National Priorities--Homeland Security and Economic
CRI:IAD - 迫切需要对群体互动进行观察、便利和计算机支持,以推进美国国家优先事项——国土安全和经济
- 批准号:
1037598 - 财政年份:2010
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: SES 98-1320: Innovation Personnel and their Ecosystem: Career Choices and Trajectories of Scientists - Industry or Academia and Basic or Applied?
合作研究:SES 98-1320:创新人员及其生态系统:科学家的职业选择和轨迹 - 工业界还是学术界以及基础还是应用?
- 批准号:
1025226 - 财政年份:2010
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Interactive Ubiquitous Visualization of Construction Progress Monitoring with D4AR (4 Dimensional Augmented Reality) Models
使用 D4AR(4 维增强现实)模型实现施工进度监控的交互式无处不在的可视化
- 批准号:
1063559 - 财政年份:2010
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Interactive Ubiquitous Visualization of Construction Progress Monitoring with D4AR (4 Dimensional Augmented Reality) Models
使用 D4AR(4 维增强现实)模型实现施工进度监控的交互式无处不在的可视化
- 批准号:
0800500 - 财政年份:2008
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
CRI: IAD - A Pressing Need for Observation, Facilitation and Computer Support of Group Interactions for Advancing United States National Priorities--Homeland Security and Economic
CRI:IAD - 迫切需要对群体互动进行观察、便利和计算机支持,以推进美国国家优先事项——国土安全和经济
- 批准号:
0709249 - 财政年份:2007
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Conflict, Claim, and Dispute Avoidance, Mitigation and Resolution Methodology for Large-Scale Design and Construction Projects (C2D)
协作研究:大型设计和施工项目的综合冲突、索赔和争议避免、缓解和解决方法(C2D)
- 批准号:
0700415 - 财政年份:2007
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Workshop on Key Research and Education Issues in Construction Engineering and Management for the 2010 Decade
2010年十年建设工程与管理重点研究与教育问题研讨会
- 批准号:
0751406 - 财政年份:2007
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
NSF CAREER Workshop at the 2005 Construction Research Congress (CRC); April 5-6, 2005; San Diego, CA
2005 年建筑研究大会 (CRC) 上的 NSF 职业研讨会;
- 批准号:
0521941 - 财政年份:2005
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
PECASE: Collaborative Negotiation Methodology for Large-Scale Infrastructure Projects
PECASE:大型基础设施项目的协作谈判方法
- 批准号:
0513489 - 财政年份:2005
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: The Automatic Weather Station Program: Antarctic Meteorological Sentinel Service 2024-2027
合作研究:自动气象站计划:南极气象哨兵服务2024-2027
- 批准号:
2301362 - 财政年份:2023
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: The Automatic Weather Station Program: Antarctic Meteorological Sentinel Service 2024-2027
合作研究:自动气象站计划:南极气象哨兵服务2024-2027
- 批准号:
2301363 - 财政年份:2023
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Automatic Discovery and Verification of Database Query Transformations
合作研究:FMitF:第一轨:数据库查询转换的自动发现和验证
- 批准号:
2219995 - 财政年份:2022
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Automatic Discovery and Verification of Database Query Transformations
合作研究:FMitF:第一轨:数据库查询转换的自动发现和验证
- 批准号:
2220407 - 财政年份:2022
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Collaborative Automatic Parallelization
协作研究:SHF:中:协作自动并行化
- 批准号:
2107257 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Continuing Grant
IRES: Track I: Collaborative Research: Supporting FSU and MTU Student Research with NTNU Faculty on Automatic Improvement of Application Performance
IRES:第一轨道:合作研究:支持 FSU 和 MTU 学生与 NTNU 教师一起进行自动改进应用程序性能的研究
- 批准号:
2103105 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Collaborative Automatic Parallelization
协作研究:SHF:中:协作自动并行化
- 批准号:
2107042 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Continuing Grant
Collaborative Research: Improving Techniques of Automatic Speech Recognition and Transfer Learning using Documentary Linguistic Corpora
合作研究:利用文献语言语料库改进自动语音识别和迁移学习技术
- 批准号:
2123624 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
IRES: Track I: Collaborative Research: Supporting FSU and MTU Student Research with NTNU Faculty on Automatic Improvement of Application Performance
IRES:第一轨道:合作研究:支持 FSU 和 MTU 学生与 NTNU 教师一起进行自动改进应用程序性能的研究
- 批准号:
2103103 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: Improving Techniques of Automatic Speech Recognition and Transfer Learning using Documentary Linguistic Corpora
合作研究:利用文献语言语料库改进自动语音识别和迁移学习技术
- 批准号:
2123578 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant