CDS&E: Geometrical Regression Models Involving Complex Shape Variables
CDS
基本信息
- 批准号:1953087
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The need for quantifying shapes of objects arises in many scientific endeavors, with prominent examples in anatomy, biology, physics, and computer vision. These objects can be anatomical parts, biological cells, road networks, facial surfaces, or dinosaur bones. In statistical shape analysis, one uses mathematical representations to measure and analyze statistical variability of shapes within and across subject populations. Furthermore, one studies interactions of shapes with other related variables of interest. For examples, in medical imaging one uses shapes of tumors to diagnose and treat diseases or one studies the effects of aging on shapes of cellular structures to develop appropriate drugs. Such studies are broadly termed shape regression, where one forms statistical models for analyzing interactions of shapes with other variables of interests. Shape can either be used a predictors or responses depending upon the problem context. There is an urgent need to develop formal statistical tools, especially regression models, for analyzing shape data in many disciplines. While recent years have seen tremendous progress in Riemannian approaches to shape representations, the development of statistical models for shape regressions has been relatively limited. The two biggest challenges are non-Euclidean nature of shape representations and lack of registrations in given object data. Past approaches are restricted to statistical models that use pre-registered data and globally linear approximations on one hand, and machine learning solutions that lack interpretable solutions on the other. The proposed research will provide detailed interpretable solutions with ability to formally test relationships between shapes and other variables, even when data is sparse. The key innovations are: (1) use of locally linear approximations of shape manifolds to reduce distortions, and (2) incorporate optimizations over nuisance (registration-related) transformations inside regression models rather than as pre-processing. The project will develop underlying estimation theory and efficient computational solutions for implementing these methods across scientific disciplines. These models will also be amenable to development of real-time, scalable algorithms for analyzing large datasets, for estimation, prediction and testing of models involving shape variables. This project brings together a broad expertise from diverse areas such as computational Riemannian geometry, statistical methodology, and scientific applications, to make new inroads. This research direction, while clearly challenging, represents a fresh perspective and a great opportunity to develop new statistics and to contribute in major scientific advances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量化物体形状的需求出现在许多科学研究中,在解剖学、生物学、物理学和计算机视觉中都有突出的例子。这些物体可以是解剖部位、生物细胞、道路网络、面部表面或恐龙骨骼。在统计形状分析中,人们使用数学表示来测量和分析对象群体内部和群体之间形状的统计可变性。此外,研究形状与其他感兴趣的相关变量的相互作用。例如,在医学成像中,人们利用肿瘤的形状来诊断和治疗疾病,或者研究衰老对细胞结构形状的影响来开发适当的药物。这种研究被广泛地称为形状回归,其中一个形成统计模型来分析形状与其他感兴趣的变量的相互作用。根据问题上下文,形状既可以用作预测器,也可以用作响应。在许多学科中,迫切需要开发正式的统计工具,特别是回归模型来分析形状数据。虽然近年来黎曼方法在形状表示方面取得了巨大进展,但形状回归统计模型的发展相对有限。两个最大的挑战是形状表示的非欧几里得性质和给定对象数据缺乏配准。过去的方法一方面局限于使用预注册数据和全局线性近似的统计模型,另一方面局限于缺乏可解释解决方案的机器学习解决方案。提出的研究将提供详细的可解释的解决方案,能够正式测试形状和其他变量之间的关系,即使在数据稀疏的情况下。关键的创新是:(1)使用形状流形的局部线性近似来减少扭曲,以及(2)在回归模型内结合对干扰(与配准相关)转换的优化,而不是作为预处理。该项目将开发潜在的估计理论和有效的计算解决方案,以便跨科学学科实施这些方法。这些模型也将适用于实时、可扩展算法的开发,用于分析大型数据集,用于估计、预测和测试涉及形状变量的模型。该项目汇集了来自计算黎曼几何、统计方法学和科学应用等不同领域的广泛专业知识,以取得新的进展。这一研究方向虽然具有明显的挑战性,但代表了一个新的视角和一个发展新统计数据并为重大科学进步做出贡献的绝佳机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SrvfRegNet: Elastic Function Registration Using Deep Neural Networks
- DOI:10.1109/cvprw53098.2021.00503
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Chao Chen;Anuj Srivastava
- 通讯作者:Chao Chen;Anuj Srivastava
Representation of Chromosome Conformations Using a Shape Alphabet Across Modeling Methods
跨建模方法使用形状字母表示染色体构象
- DOI:10.1109/bibm52615.2021.9669716
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Soto, Carlos;Dalgarno, Audrey;Bryner, Darshan;McLaughlin, Benjamin;Neretti, Nicola;Srivastava, Anuj
- 通讯作者:Srivastava, Anuj
Bayesian Tracking of Video Graphs Using Joint Kalman Smoothing and Registration
- DOI:10.1007/978-3-031-19833-5_26
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:A. Bal;R. Mounir;Sathyanarayanan N. Aakur;Sudeep Sarkar;Anuj Srivastava
- 通讯作者:A. Bal;R. Mounir;Sathyanarayanan N. Aakur;Sudeep Sarkar;Anuj Srivastava
Elastic Shape Analysis of Planar Objects Using Tensor Field Representations
使用张量场表示的平面物体的弹性形状分析
- DOI:10.1007/s10851-021-01047-x
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Zhang, Ruiyi;Srivastava, Anuj
- 通讯作者:Srivastava, Anuj
Density-on-scalar Single-index Quantile Regression Model
标量密度单指数分位数回归模型
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Zhou X.;Ding S.;Wang J.;Liu R.;Kong L.;Huang, C.
- 通讯作者:Huang, C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anuj Srivastava其他文献
Statistical Modeling of Functional Data
功能数据的统计建模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Anuj Srivastava;E. Klassen - 通讯作者:
E. Klassen
Estimating summary statistics in the spike-train space
估计尖峰序列空间中的汇总统计数据
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.2
- 作者:
Wei Wu;Anuj Srivastava - 通讯作者:
Anuj Srivastava
Structure-based RNA Function Prediction Using Elastic Shape Analysis
使用弹性形状分析进行基于结构的 RNA 功能预测
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jose Laborde;Anuj Srivastava;Jinfeng Zhang - 通讯作者:
Jinfeng Zhang
Chapter 9 - Image Analysis and Recognition
第9章-图像分析与识别
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Anuj Srivastava - 通讯作者:
Anuj Srivastava
Geometric Analysis of Axonal Tree Structures
轴突树结构的几何分析
- DOI:
10.5244/c.29.diffcv.8 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Adam Duncan;E. Klassen;X. Descombes;Anuj Srivastava - 通讯作者:
Anuj Srivastava
Anuj Srivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anuj Srivastava', 18)}}的其他基金
Collaborative Research: RI:Medium: Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
1955154 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Workshop on Applications-Driven Geometric Functional Data Analysis
应用驱动的几何函数数据分析研讨会
- 批准号:
1710802 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Geometrical and Statistical Modeling of Space-Time symmetries for Human Action Analysis and Retraining
CIF:小型:协作研究:用于人类行为分析和再训练的时空对称性的几何和统计建模
- 批准号:
1617397 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CDS&E: Computational Riemannian Approaches for Statistical Analysis and Modeling of Complex Structures
CDS
- 批准号:
1621787 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Geometry-aware and data-adaptive signal processing for resource constrained activity analysis
CIF:小型:协作研究:用于资源受限活动分析的几何感知和数据自适应信号处理
- 批准号:
1319658 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Ontology based Perceptual Organization of Audio-Video Events using Pattern Theory
RI:小型:协作研究:使用模式理论对音频-视频事件进行基于本体的感知组织
- 批准号:
1217515 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A New Paradigm in Joint Registration, Analysis and Modeling of Function Data
函数数据联合配准、分析和建模的新范式
- 批准号:
1208959 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MCS: Research on Detection and Classification of 2D and 3D Shapes in Cluttered Point Clouds
MCS:杂乱点云中 2D 和 3D 形状的检测和分类研究
- 批准号:
0915003 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Development of Geometrical and Statistical Models for Automated Object Recognition
FRG:自动对象识别的几何和统计模型的开发
- 批准号:
0101429 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Mechano-geometrical cell interface for generating hiPSC derived higher order gastruloid
用于生成 hiPSC 衍生的高阶原肠胚的机械几何细胞接口
- 批准号:
23K17205 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multi-core fiber sensing using geometrical phase nonlinearity of optical polarization
利用光学偏振的几何相位非线性进行多芯光纤传感
- 批准号:
23K04616 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
- 批准号:
2888423 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Geometrical structures in mathematical physics
数学物理中的几何结构
- 批准号:
RGPIN-2018-05413 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Understanding Kirkendall Pore Formation and Evolution: Correlating Compositional, Geometrical, and Thermal Influences
职业:了解柯肯德尔孔隙的形成和演化:关联成分、几何和热影响
- 批准号:
2143334 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Metric and planning of reliable robotic manipulation, equivalently measuring both geometrical and mechanical constraints
可靠的机器人操作的度量和规划,相当于测量几何和机械约束
- 批准号:
22H01457 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
- 批准号:
22K14142 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An advanced multiphase model for geometrical evolution and anomalous flows
几何演化和反常流动的高级多相模型
- 批准号:
FT210100165 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
ARC Future Fellowships
Topological and geometrical aspects of condensed matter systems
凝聚态系统的拓扑和几何方面
- 批准号:
2856645 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
The geometrical framework of General Relativity and String Theory
广义相对论和弦理论的几何框架
- 批准号:
2758423 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship