FRG: Development of Geometrical and Statistical Models for Automated Object Recognition
FRG:自动对象识别的几何和统计模型的开发
基本信息
- 批准号:0101429
- 负责人:
- 金额:$ 52.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anuj Srivastava 0101429AbstractThe proposed research will focus on developing methods for automated object recognition using tools from statistics, differential geometry and computer graphics. The main objective is to design algorithms for recognizing (3D) objects from their (2D) camera images, with an emphasis on automated face recognition. The biggest challenge comes from the variability manifested in the images. How do we model it and what efficient procedures can be used to analyze it? Many current methods seek dominant subspaces (e.g. PCA, ICA, Fisher discriminant) of the observed images to capture and characterize this variability. Although the hardware technology has advanced significantly for both computing and imaging,the current mathematical techniques and algorithms for computer vision remain limited in their ability to fundamentally handle the image variability. Recent technological advances, such as 3D imaging, super fast graphics, and high-performance computing, make this project both feasible and timely.Our approach builds upon the physical considerations that will lead to representations in stochastic geometry. We highlight the physical factors behind the image variability and propose methods to model them. A distinct advantage of modeling the physical factors is the ability to incorporate the contextual information in the resulting recognition algorithms. In particular, we will develop (i) geometric models for facial shape variability, (ii) tools for synthetic illumination and facial rendering, and (iii) algorithms for statistical inference on these models/parameters. We use coordinate and differential geometry to characterize object shapes, pose, motion, reflectance, illumination, and their time variations, and show that these variables take values on the Lie groups and their quotient spaces. Following the "analysis by synthesis" paradigm, where the observed images are statistically compared to the synthesized images, we propose inferences over the nuisance variables to seek the best match, and thus perform recognition. In a Bayesian framework, the contextual knowledge of these physical representations can be incorporated as a prior model, to add to the observed information. The inference engine is based on the Monte-Carlo methods particularized to these representations. These stated goals require expertise from distant areas of statistics, geometry, computing, and graphics. Through this FRG collaboration, we will create an atmosphere for synergistic, multi-disciplinary research that will support many future endeavors.
Anuj Srivastava 0101429摘要拟议的研究将集中在开发方法,自动物体识别使用的工具,从统计,微分几何和计算机图形学。 主要目标是设计算法,用于从(2D)相机图像中识别(3D)对象,重点是自动人脸识别。最大的挑战来自图像中表现出的可变性。我们如何建模它,什么有效的程序可以用来分析它? 目前的许多方法寻求占主导地位的子空间(例如PCA,伊卡,Fisher判别)的观察到的图像捕捉和表征这种变化。虽然硬件技术在计算和成像方面都有了很大的进步,但目前用于计算机视觉的数学技术和算法在从根本上处理图像变化的能力方面仍然有限。最近的技术进步,如3D成像,超快的图形和高性能计算,使这个项目既可行又及时。我们的方法建立在物理考虑,将导致在随机几何表示。 我们强调图像变化背后的物理因素,并提出方法来模拟它们。对物理因素进行建模的一个明显优势是能够将上下文信息纳入最终的识别算法中。 特别是,我们将开发(i)面部形状变化的几何模型,(ii)合成照明和面部渲染的工具,以及(iii)对这些模型/参数进行统计推断的算法。我们使用坐标和微分几何来表征物体的形状,姿态,运动,反射率,照明,和它们的时间变化,并表明这些变量的李群和他们的商空间的值。 在“合成分析”的范例,观察到的图像进行统计比较的合成图像,我们提出的滋扰变量的推断,以寻求最佳匹配,从而进行识别。 在贝叶斯框架中,这些物理表示的上下文知识可以被合并为先验模型,以添加到观察到的信息中。推理机是基于蒙特-卡罗方法具体到这些表示。这些既定的目标需要来自统计、几何、计算和图形等遥远领域的专业知识。 通过这种FRG合作,我们将创造一个协同的,多学科的研究,将支持许多未来的努力的氛围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anuj Srivastava其他文献
Statistical Modeling of Functional Data
功能数据的统计建模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Anuj Srivastava;E. Klassen - 通讯作者:
E. Klassen
Estimating summary statistics in the spike-train space
估计尖峰序列空间中的汇总统计数据
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.2
- 作者:
Wei Wu;Anuj Srivastava - 通讯作者:
Anuj Srivastava
Structure-based RNA Function Prediction Using Elastic Shape Analysis
使用弹性形状分析进行基于结构的 RNA 功能预测
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jose Laborde;Anuj Srivastava;Jinfeng Zhang - 通讯作者:
Jinfeng Zhang
Chapter 9 - Image Analysis and Recognition
第9章-图像分析与识别
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Anuj Srivastava - 通讯作者:
Anuj Srivastava
Geometric Analysis of Axonal Tree Structures
轴突树结构的几何分析
- DOI:
10.5244/c.29.diffcv.8 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Adam Duncan;E. Klassen;X. Descombes;Anuj Srivastava - 通讯作者:
Anuj Srivastava
Anuj Srivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anuj Srivastava', 18)}}的其他基金
CDS&E: Geometrical Regression Models Involving Complex Shape Variables
CDS
- 批准号:
1953087 - 财政年份:2020
- 资助金额:
$ 52.2万 - 项目类别:
Continuing Grant
Collaborative Research: RI:Medium: Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
1955154 - 财政年份:2020
- 资助金额:
$ 52.2万 - 项目类别:
Continuing Grant
Workshop on Applications-Driven Geometric Functional Data Analysis
应用驱动的几何函数数据分析研讨会
- 批准号:
1710802 - 财政年份:2017
- 资助金额:
$ 52.2万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Geometrical and Statistical Modeling of Space-Time symmetries for Human Action Analysis and Retraining
CIF:小型:协作研究:用于人类行为分析和再训练的时空对称性的几何和统计建模
- 批准号:
1617397 - 财政年份:2016
- 资助金额:
$ 52.2万 - 项目类别:
Standard Grant
CDS&E: Computational Riemannian Approaches for Statistical Analysis and Modeling of Complex Structures
CDS
- 批准号:
1621787 - 财政年份:2016
- 资助金额:
$ 52.2万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Geometry-aware and data-adaptive signal processing for resource constrained activity analysis
CIF:小型:协作研究:用于资源受限活动分析的几何感知和数据自适应信号处理
- 批准号:
1319658 - 财政年份:2013
- 资助金额:
$ 52.2万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Ontology based Perceptual Organization of Audio-Video Events using Pattern Theory
RI:小型:协作研究:使用模式理论对音频-视频事件进行基于本体的感知组织
- 批准号:
1217515 - 财政年份:2012
- 资助金额:
$ 52.2万 - 项目类别:
Standard Grant
A New Paradigm in Joint Registration, Analysis and Modeling of Function Data
函数数据联合配准、分析和建模的新范式
- 批准号:
1208959 - 财政年份:2012
- 资助金额:
$ 52.2万 - 项目类别:
Standard Grant
MCS: Research on Detection and Classification of 2D and 3D Shapes in Cluttered Point Clouds
MCS:杂乱点云中 2D 和 3D 形状的检测和分类研究
- 批准号:
0915003 - 财政年份:2009
- 资助金额:
$ 52.2万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of simultaneous measurement method for geometrical thickness and refractive index of transparent plate by tandem low-coherence double-sided interferometer
串联低相干双面干涉仪同时测量透明板几何厚度和折射率方法的研制
- 批准号:
19K05321 - 财政年份:2019
- 资助金额:
$ 52.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of high strength and high corrosion resistant Mg alloys by controlling geometrical and electrochemical heterogeneity
通过控制几何和电化学异质性开发高强度、高耐蚀镁合金
- 批准号:
17H03431 - 财政年份:2017
- 资助金额:
$ 52.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automated segmentation and quantification of geometrical and structural parameters of the hip in 3D-MRI data sets: Development of algorithms for reliable data analysis in large cohorts (German National Cohort)
3D-MRI 数据集中髋部几何和结构参数的自动分割和量化:开发大型队列中可靠数据分析的算法(德国国家队列)
- 批准号:
325028047 - 财政年份:2017
- 资助金额:
$ 52.2万 - 项目类别:
Research Grants
Development of Mechanical and Geometrical Texture Sensing System Based on Mastication Pressure Distribution Analysis
基于咀嚼压力分布分析的机械和几何纹理传感系统的开发
- 批准号:
17K06263 - 财政年份:2017
- 资助金额:
$ 52.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Earthquake Dynamic Rupture Processes Interacting with Bimaterial Interface: Development of XBIM with Geometrical Complexity
与双材料界面相互作用的地震动态破裂过程:具有几何复杂性的 XBIM 开发
- 批准号:
25400441 - 财政年份:2013
- 资助金额:
$ 52.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The development of optical chamber which can maintain temperature and absolute air refractive index using geometrical path compensation
利用几何路径补偿保持温度和绝对空气折射率的光学室的开发
- 批准号:
25630022 - 财政年份:2013
- 资助金额:
$ 52.2万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of differential geometrical methods in mathematical physics
数学物理中微分几何方法的发展
- 批准号:
7855-2008 - 财政年份:2010
- 资助金额:
$ 52.2万 - 项目类别:
Discovery Grants Program - Individual
Development of predictive formula for wetting phenomena from thermodynamic and geometrical view point
从热力学和几何角度开发润湿现象的预测公式
- 批准号:
22656048 - 财政年份:2010
- 资助金额:
$ 52.2万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of differential geometrical methods in mathematical physics
数学物理中微分几何方法的发展
- 批准号:
7855-2008 - 财政年份:2009
- 资助金额:
$ 52.2万 - 项目类别:
Discovery Grants Program - Individual
New Development of the Density Matrix Renormalization Group Method based on Quantum Entanglement and Geometrical Phases
基于量子纠缠和几何相位的密度矩阵重整化群方法的新进展
- 批准号:
20740214 - 财政年份:2008
- 资助金额:
$ 52.2万 - 项目类别:
Grant-in-Aid for Young Scientists (B)