Materials World Network: Dual Composite Ceramics for Improved Properties

材料世界网络:双复合陶瓷可改善性能

基本信息

项目摘要

NON-TECHNICAL DESCRIPTION: This project is a collaboration between two of the leading research groups in the area of ultra-high temperature ceramics, namely the Institute for the Science and Technology for Ceramics (ISTEC) in Faenza, Italy and the Missouri University of Science and Technology in Rolla, MO. The team at ISTEC includes Dr. Frederic Monteverde and Dr. Diletta Sciti who are funded separately by the Consiglio Nazionale delle Ricerche (CNR) in Italy. The focus of the combined effort is on fundamental aspects of processing and microstructure of boride-based ceramics to improve their mechanical properties at elevated temperature. Boride ceramics, such as zirconium diboride, are currently capable of withstanding sustained mechanical loads over a range of temperatures but fail catastrophically under extreme loads and under the extreme thermomechanical conditions for which they are being researched and developed. Applications include thermal protection systems for hypersonic flight, containment materials and fuel forms for nuclear reactors, high-speed cutting tools for machining, and ultra-high temperature refractories for metal production. The focal point of this project is the development of a dual composite architecture designed to create a new paradigm of structural ceramics with superior mechanical properties at elevated temperatures and in extreme environments. The ability to utilize dual composite ceramics in commercial applications, in extreme environments, will provide improvements in both energy efficiency and sustainability of future systems such as hypersonic aircraft and molten metal containment.TECHNICAL DETAILS: Utilizing the combined expertise of the research group at ISTEC in diboride-silicide ceramics and the processing and properties of hierarchical ceramic composites expertise of the research group at Missouri S&T, the goal of the project is the development of a new paradigm of dual composite ceramics with improved elevated temperature mechanical properties. Zirconium diboride that is liquid phase sintered with molybdenum disilicide is being used as a base composition for the dual composite ceramics, although the concept is broadly applicable to any thermodynamically compatible material system. The role of controlling the structure and microstructure of ceramics at multiple length scales (i.e., a dual composite architecture) on the elevated temperature mechanical behavior of boride-based ceramics is being investigated using experimental studies, physics-based models, and analytical characterization techniques. The project is timely based on the global need to develop new ceramic materials for applications in extreme environments. Furthermore, the outcome of the research has the potential to transform state of the art boride ceramics into ceramics capable of extending the lifetime and use temperature of ceramics for applications in extreme environments, including hypersonic flight vehicles, nuclear reactors, molten metal and glass containment vessels, and others. Finally, ceramic materials for extreme environments is an area of research and development that is highly specialized and in dire need of more trained scientists and engineers to lead future research efforts. The project is directly impacting this area of the ceramic field by facilitating the exchange of young, underrepresented researchers from both institutions and by directly training a graduate student and two undergraduate students in the processing, testing, and characterization of ceramics for use in extreme environments.
非技术描述:该项目是超高温陶瓷领域的两个领先研究小组之间的合作,即位于意大利法恩扎的陶瓷科学技术研究所(ISTEC)和位于密苏里州罗拉的密苏里州科技大学。 ISTEC的团队包括Frederic Monteverde博士和Diletta Sciti博士,他们分别由意大利的Consiglio Nazionale delle Ricerche(CNR)资助。 结合努力的重点是硼化物基陶瓷的加工和微观结构的基本方面,以提高其在高温下的机械性能。 硼化物陶瓷,例如二硼化锆,目前能够在一定温度范围内承受持续的机械载荷,但在极端载荷和极端热机械条件下灾难性地失效,它们正在为此进行研究和开发。 应用包括用于高超音速飞行的热保护系统、用于核反应堆的安全壳材料和燃料形式、用于机加工的高速切削工具以及用于金属生产的超高温耐火材料。该项目的重点是开发双重复合结构,旨在创建一种在高温和极端环境下具有优异机械性能的结构陶瓷新范式。上级陶瓷。 利用双复合陶瓷在商业应用中的能力,在极端的环境中,将提供在能源效率和可持续性的未来系统,如高超声速飞机和熔融金属containment.Technical优势:利用在ISTEC的研究小组在二硼化物-硅化物陶瓷和在密苏里州ST的研究小组的处理和分层陶瓷复合材料的专业知识的属性相结合的专业知识,该项目的目标是一个新的范例的发展提高高温机械性能的双复合陶瓷。 与二硅化钼液相烧结的二硼化锆被用作双复合陶瓷的基础成分,尽管该概念广泛适用于任何化学相容的材料系统。 在多个长度尺度上控制陶瓷的结构和微观结构的作用(即,双复合结构)对硼化物基陶瓷的高温机械性能的影响正在使用实验研究、基于物理的模型和分析表征技术进行研究。该项目是及时的基础上,全球需要开发新的陶瓷材料的应用在极端环境中。 此外,研究成果有可能将最先进的硼化物陶瓷转化为能够延长陶瓷寿命和使用温度的陶瓷,用于极端环境,包括高超音速飞行器,核反应堆,熔融金属和玻璃安全壳等。 最后,用于极端环境的陶瓷材料是一个高度专业化的研发领域,迫切需要更多训练有素的科学家和工程师来领导未来的研究工作。 该项目直接影响陶瓷领域的这一领域,促进来自两个机构的年轻,代表性不足的研究人员的交流,并直接培训一名研究生和两名本科生在极端环境中使用的陶瓷的加工,测试和表征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Hilmas其他文献

Gregory Hilmas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Hilmas', 18)}}的其他基金

SBIR Phase I: Development of Multilayer Ceramic Capacitors Through Microfabrication by Coextrusion Melt Spinning
SBIR 第一阶段:通过共挤熔融旋压微加工开发多层陶瓷电容器
  • 批准号:
    9660898
  • 财政年份:
    1997
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant

相似国自然基金

国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
  • 批准号:
    81942001
  • 批准年份:
    2019
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
  • 批准号:
    239013293
  • 财政年份:
    2013
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
  • 批准号:
    240640164
  • 财政年份:
    2013
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Research Grants
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
  • 批准号:
    1311849
  • 财政年份:
    2013
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
  • 批准号:
    1312160
  • 财政年份:
    2013
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
  • 批准号:
    1312421
  • 财政年份:
    2013
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
  • 批准号:
    1312525
  • 财政年份:
    2013
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
  • 批准号:
    1312697
  • 财政年份:
    2013
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
  • 批准号:
    1312750
  • 财政年份:
    2013
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了