Monitoring and Driving Chemical Response with Single Molecule Nanocircuits

用单分子纳米电路监测和驱动化学反应

基本信息

  • 批准号:
    1231910
  • 负责人:
  • 金额:
    $ 30.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

AbstractThe idea of molecular electronics is usually stated in terms of miniaturization, scaling, and the difficulties of extending silicon technologies. Aside from digital logic, however, molecule-based architectures could also be novel transducers of chemical activity. For example, single molecule electronic devices might be used to merge solid state electronics with the dynamic behavior of constituent biomolecules. This novel repurposing might be the most transformative and impactful outcome of fabricating devices at molecular scales, since no electronic product today incorporates proteins, DNA, or any other biomolecule in a functional way. Even if molecular devices never compete with traditional digital electronics as memory or transistor devices, these alternate purposes represent untapped new fields with tremendous potential import.For example, imagine a silicon chip device that could report the function of a particular enzyme, or medicine, or catalyst particle. Directly reporting chemical activity with a solid state device could give users new insights into chemistry happening in real time. This new information would enable the efficient development of new drugs, or the in situ testing of catalysts to check their effectiveness. This project aims to experimentally demonstrate and test this premise, and furthermore to monitor chemical activity with molecule-by-molecule precision. The work is made possible by a recently developed architecture in which single molecules are integrated into functioning carbon nanotube transistor devices. The nanotube conductance records chemical events in real time with microsecond resolution, as the attached molecule interacts with its immediate environment. Past work has successfully recorded complex, time varying signals associated single molecule chemistry. However, the generality of the devices remains unproven, and there is no understanding of how chemical, electronic, and mechanical degrees of freedom combine to generate the signals of interest. A primary goal of this project will be to develop an understanding these possible contributions, in order to develop design rules for how to refine and control the mechanisms at work.Intellectual Merit: This proposal makes effective use of recent discoveries to push forward the field of molecular electronics, and it does so in a direction of immediate practicality. The goals are designed to improve our fundamental understanding of signal transduction in single molecule devices, a critical step before such devices can be commercialized for practical applications. The project is timely and well-positioned because it leverages other ongoing research efforts, it is immediately technically feasible, and suggestive preliminary data exist.Broader Impacts: If successful, this project may help develop an electronic device having wide-ranging commercial significance. As a high sensitivity and high bandwidth sensor it could benefit a wide spectrum of the medical and pharmaceutical industries through new diagnostic and research capabilities, independent of fluorophores or other optical equipment. There are also potential benefits to chemical processing generally, through improved process monitoring and control. The project will also directly support the research training of junior scientists, and the training of science majors interested in becoming K-12 science teachers.
分子电子学的概念通常是从微型化、规模化和扩展硅技术的困难等方面来阐述的。然而,除了数字逻辑之外,基于分子的架构也可以成为化学活性的新型传感器。 例如,单分子电子器件可用于将固态电子学与组成生物分子的动态行为合并。 这种新的再利用可能是在分子尺度上制造设备的最具变革性和影响力的结果,因为今天没有电子产品以功能性的方式整合蛋白质,DNA或任何其他生物分子。 即使分子器件永远无法与传统的数字电子器件(如存储器或晶体管器件)竞争,这些替代用途也代表了具有巨大潜在重要性的尚未开发的新领域。例如,想象一下,一种硅芯片器件可以报告特定酶、药物或催化剂颗粒的功能。 用固态设备直接报告化学活性可以让用户对真实的化学反应有新的了解。 这些新的信息将使新药的有效开发成为可能,或对催化剂进行现场测试以检查其有效性。 该项目旨在通过实验证明和测试这一前提,并进一步以分子为单位精确监测化学活性。 这项工作是通过最近开发的一种结构实现的,在这种结构中,单分子被集成到功能性碳纳米管晶体管器件中。 当附着的分子与其直接环境相互作用时,纳米管电导以微秒的分辨率记录真实的化学事件。 过去的工作已经成功地记录了与单分子化学相关的复杂的时变信号。 然而,这些装置的通用性仍然未经证实,并且不了解化学、电子和机械自由度如何结合联合收割机来产生感兴趣的信号。该项目的主要目标是了解这些可能的贡献,以便开发如何改进和控制工作机制的设计规则。智力优势:该提案有效地利用了最近的发现,推动了分子电子学领域的发展,并且朝着直接实用的方向发展。 这些目标旨在提高我们对单分子装置中信号转导的基本理解,这是此类装置商业化用于实际应用之前的关键一步。 该项目是及时的和良好的定位,因为它利用了其他正在进行的研究工作,它是立即技术上可行的,并提示初步数据存在。更广泛的影响:如果成功,该项目可能有助于开发一种具有广泛商业意义的电子设备。 作为一种高灵敏度和高带宽的传感器,它可以通过新的诊断和研究能力,独立于荧光团或其他光学设备,使广泛的医疗和制药行业受益。 通过改进过程监测和控制,一般来说,化学加工也有潜在的好处。 该项目还将直接支持初级科学家的研究培训,以及对有兴趣成为K-12科学教师的科学专业学生的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Collins其他文献

Prevalence of ADHD symptoms among youth in a secure facility: the consistency and accuracy of self- and informant-report ratings
安全设施中青少年多动症症状的患病率:自我报告和知情人报告评级的一致性和准确性
  • DOI:
    10.1080/14789940903311566
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Young;G. Gudjonsson;P. Misch;Philip Collins;P. Carter;J. Redfern;Emily J. Goodwin
  • 通讯作者:
    Emily J. Goodwin
The movement ecology of a breeding seabird : an investigation using accelerometry
繁殖海鸟的运动生态学:利用加速度测量法进行的研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Collins
  • 通讯作者:
    Philip Collins
Predictors of institutional behavioural disturbance and offending in the community among young offenders
青少年罪犯社区中制度性行为障碍和犯罪的预测因素
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Young;P. Misch;Philip Collins;G. Gudjonsson
  • 通讯作者:
    G. Gudjonsson

Philip Collins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Collins', 18)}}的其他基金

PFI-TT: Development of a Single-Molecule Electronic Biosensor
PFI-TT:单分子电子生物传感器的开发
  • 批准号:
    1827671
  • 财政年份:
    2018
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Standard Grant
MRI: Development of a Microscope with Simultaneous Electrical and Optical Measurement of Single Molecules
MRI:开发可同时测量单分子电学和光学的显微镜
  • 批准号:
    1531833
  • 财政年份:
    2015
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Standard Grant
Electrical Resistance of a Point Defect
点缺陷的电阻
  • 批准号:
    1104629
  • 财政年份:
    2011
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Continuing Grant
Dynamic Monitoring and Sensing with Single-Molecule Nanoelectronics
单分子纳米电子学动态监测和传感
  • 批准号:
    0802077
  • 财政年份:
    2008
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Standard Grant
Electronic Fluctuation and Localization at Point Defects
点缺陷处的电子波动和定位
  • 批准号:
    0801271
  • 财政年份:
    2008
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Standard Grant
In Situ Characterization of a Single Catalytic Nanoparticle
单个催化纳米颗粒的原位表征
  • 批准号:
    0729630
  • 财政年份:
    2007
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Continuing Grant
NIRT: Direct Electronic Sensing of Biomolecular Activity and Signaling
NIRT:生物分子活性和信号传导的直接电子传感
  • 批准号:
    0404057
  • 财政年份:
    2004
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Continuing Grant
CAREER: Electronic, Chemical, and Mechanical Interactions at the Nanometer and Single - Molecule Scale
职业:纳米和单分子尺度的电子、化学和机械相互作用
  • 批准号:
    0239842
  • 财政年份:
    2003
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Continuing Grant
Development of an Ultrahigh Vacuum Nanocircuit Characterization System for Research and Student Training
开发用于研究和学生培训的超高真空纳米电路表征系统
  • 批准号:
    0315830
  • 财政年份:
    2003
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Standard Grant

相似海外基金

Quantifying Synthetic Efficiency of Self-Driving Labs to Travel Through Chemical Space
量化自动驾驶实验室穿越化学空间的综合效率
  • 批准号:
    561994-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 30.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Autonomous Chemical Discovery Using Self-Driving Robots
使用自动驾驶机器人进行自主化学发现
  • 批准号:
    535601-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Chemical and genetic mechanisms driving microbial interactions in a model microbiome
合作研究:驱动模型微生物组中微生物相互作用的化学和遗传机制
  • 批准号:
    2128044
  • 财政年份:
    2021
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Standard Grant
Autonomous Chemical Discovery Using Self-Driving Robots
使用自动驾驶机器人进行自主化学发现
  • 批准号:
    535601-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Autonomous Chemical Discovery Using Self-Driving Robots
使用自动驾驶机器人进行自主化学发现
  • 批准号:
    535601-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Chemical and genetic mechanisms driving microbial interactions in a model microbiome
合作研究:驱动模型微生物组中微生物相互作用的化学和遗传机制
  • 批准号:
    1817955
  • 财政年份:
    2018
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemical and genetic mechanisms driving microbial interactions in a model microbiome
合作研究:驱动模型微生物组中微生物相互作用的化学和遗传机制
  • 批准号:
    1817887
  • 财政年份:
    2018
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Standard Grant
Towards visualizing the driving principle of a chemical reaction by laser-pump electron-probe spectroscopy
通过激光泵电子探针光谱可视化化学反应的驱动原理
  • 批准号:
    17F17338
  • 财政年份:
    2017
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
New routes to driving enzyme-catalysed chemical synthesis using hydrogen gas
使用氢气驱动酶催化化学合成的新途径
  • 批准号:
    EP/N013514/1
  • 财政年份:
    2016
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Research Grant
Driving Chemical Reactions by Visible and Ultraviolet Light on Supported Noble Metal Nanoparticles
通过可见光和紫外光驱动负载型贵金属纳米颗粒上的化学反应
  • 批准号:
    DP110104990
  • 财政年份:
    2011
  • 资助金额:
    $ 30.37万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了