MRI: Development of a Microscope with Simultaneous Electrical and Optical Measurement of Single Molecules
MRI:开发可同时测量单分子电学和光学的显微镜
基本信息
- 批准号:1531833
- 负责人:
- 金额:$ 29.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical techniques for watching single molecules received the 2014 Nobel Prize in Chemistry because of the way they are revolutionizing research in the life sciences. In laboratories around the world, the use of fluorescence to "see" individual molecules undergoing chemical changes is helping to reveal how complex molecules like proteins really work or when these proteins become disabled by genetic mutations or pharmaceutical drugs. Recently, researchers at UC Irvine have invented a new, all-electronic method for "listening" to single molecules. Instead of looking at fluorescent light coming from a protein, the electronic technique is sensitive to the movement of charges on a protein's surface. The goal of this MRI project is to develop a new type of microscope that can combine this new, electronic listening technique into the more conventional platform of single-molecule fluorescence microscopy. Specifically, the project will take apart a fluorescence microscope, modify the microscope to be compatible with the electronic technique, and build up a single, integrated instrument that can simultaneously watch and listen to single proteins as they do their work. For example, some proteins require one portion to bend before another portion can become chemically active. Other proteins can be disabled when a drug binds and blocks a particular motion. Being able to monitor two different portions of the same protein will be an exciting new capability for understanding cause and effect in the biochemical processes that are fundamental to healthy lives. The instrument developed in this project will add to the capabilities of two major research centers located at UC Irvine and serve as a proof-of-principle for future commercialization efforts. In addition, the instrument will contribute to the ongoing, interdisciplinary mentoring and training of undergraduates, graduates, and postdoctoral researchers, any of whom could contribute to similar development and commercialization efforts in the microscope industry.Single-molecule fluorescence techniques are exposing the complex structure-function relationships among proteins, peptides, and biopolymers. Direct observation of mechanical organization and real-time recordings of single-molecule kinetics are helping reveal how complex biochemical processes work and how they are affected by mutations and co-factors. To complement light-based techniques, researchers at UC Irvine have recently exploited the sensitivity of nanometer-scale field effect transistors to create a new single-molecule technology that is sensitive to the movement of charges on a protein surface. The electronic signals generated by these movements represent a physical mechanism that is independent of conventional single-molecule fluorescence, suggesting that a promising combination of two degrees of freedom can be used to probe individual molecules. The goal of this MRI project is to demonstrate a microscope that validates this premise. By combining the nano-transistor electronic technique with total internal reflection fluorescence imaging, the project aims to enable new types of single-molecule science that take advantage of two modes of simultaneous monitoring. For example, synchronized monitoring may distinguish between cause and effect among complex processes involving energy transfer, substrate binding, bond cleavage, and domain motions, each occurring at different sites within one protein.
用于观察单分子的光学技术获得了2014年诺贝尔化学奖,因为它们正在彻底改变生命科学的研究。 在世界各地的实验室中,使用荧光来“看到”正在发生化学变化的单个分子,有助于揭示蛋白质等复杂分子的真正工作方式,或者这些蛋白质何时因基因突变或药物而失效。 最近,加州大学欧文分校的研究人员发明了一种新的全电子方法来“倾听”单个分子。 这种电子技术并不观察来自蛋白质的荧光,而是对蛋白质表面电荷的移动很敏感。 这个MRI项目的目标是开发一种新型的显微镜,可以将这种新的电子监听技术联合收割机结合到更传统的单分子荧光显微镜平台中。 具体来说,该项目将拆开荧光显微镜,修改显微镜以与电子技术兼容,并建立一个单一的集成仪器,可以同时观察和倾听单个蛋白质的工作。 例如,一些蛋白质需要一部分弯曲,然后另一部分才能变得具有化学活性。 当药物结合并阻止特定运动时,其他蛋白质可以被禁用。 能够监测同一种蛋白质的两个不同部分将是一种令人兴奋的新能力,有助于理解对健康生命至关重要的生化过程中的因果关系。 该项目开发的仪器将增加位于加州大学欧文分校的两个主要研究中心的能力,并作为未来商业化工作的原理证明。 此外,该仪器还将为本科生、研究生和博士后研究人员提供持续的跨学科指导和培训,他们中的任何一个都可以为显微镜行业的类似开发和商业化努力做出贡献。单分子荧光技术正在揭示蛋白质、肽和生物聚合物之间复杂的结构-功能关系。 对机械组织的直接观察和单分子动力学的实时记录有助于揭示复杂的生化过程如何工作以及它们如何受到突变和辅助因子的影响。 为了补充基于光的技术,加州大学欧文分校的研究人员最近利用纳米级场效应晶体管的灵敏度,创造了一种新的单分子技术,该技术对蛋白质表面上电荷的移动敏感。 这些运动产生的电子信号代表了一种独立于传统单分子荧光的物理机制,这表明两个自由度的组合可以用于探测单个分子。 这个MRI项目的目标是展示一种验证这一前提的显微镜。 通过将纳米晶体管电子技术与全内反射荧光成像相结合,该项目旨在实现利用两种同时监测模式的新型单分子科学。 例如,同步监测可以区分复杂过程之间的因果关系,这些复杂过程涉及能量转移、底物结合、键断裂和结构域运动,每个过程发生在一个蛋白质内的不同位点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Collins其他文献
Prevalence of ADHD symptoms among youth in a secure facility: the consistency and accuracy of self- and informant-report ratings
安全设施中青少年多动症症状的患病率:自我报告和知情人报告评级的一致性和准确性
- DOI:
10.1080/14789940903311566 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
S. Young;G. Gudjonsson;P. Misch;Philip Collins;P. Carter;J. Redfern;Emily J. Goodwin - 通讯作者:
Emily J. Goodwin
The movement ecology of a breeding seabird : an investigation using accelerometry
繁殖海鸟的运动生态学:利用加速度测量法进行的研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Philip Collins - 通讯作者:
Philip Collins
Predictors of institutional behavioural disturbance and offending in the community among young offenders
青少年罪犯社区中制度性行为障碍和犯罪的预测因素
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Young;P. Misch;Philip Collins;G. Gudjonsson - 通讯作者:
G. Gudjonsson
Philip Collins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Collins', 18)}}的其他基金
PFI-TT: Development of a Single-Molecule Electronic Biosensor
PFI-TT:单分子电子生物传感器的开发
- 批准号:
1827671 - 财政年份:2018
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Monitoring and Driving Chemical Response with Single Molecule Nanocircuits
用单分子纳米电路监测和驱动化学反应
- 批准号:
1231910 - 财政年份:2012
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Electrical Resistance of a Point Defect
点缺陷的电阻
- 批准号:
1104629 - 财政年份:2011
- 资助金额:
$ 29.49万 - 项目类别:
Continuing Grant
Dynamic Monitoring and Sensing with Single-Molecule Nanoelectronics
单分子纳米电子学动态监测和传感
- 批准号:
0802077 - 财政年份:2008
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Electronic Fluctuation and Localization at Point Defects
点缺陷处的电子波动和定位
- 批准号:
0801271 - 财政年份:2008
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
In Situ Characterization of a Single Catalytic Nanoparticle
单个催化纳米颗粒的原位表征
- 批准号:
0729630 - 财政年份:2007
- 资助金额:
$ 29.49万 - 项目类别:
Continuing Grant
NIRT: Direct Electronic Sensing of Biomolecular Activity and Signaling
NIRT:生物分子活性和信号传导的直接电子传感
- 批准号:
0404057 - 财政年份:2004
- 资助金额:
$ 29.49万 - 项目类别:
Continuing Grant
CAREER: Electronic, Chemical, and Mechanical Interactions at the Nanometer and Single - Molecule Scale
职业:纳米和单分子尺度的电子、化学和机械相互作用
- 批准号:
0239842 - 财政年份:2003
- 资助金额:
$ 29.49万 - 项目类别:
Continuing Grant
Development of an Ultrahigh Vacuum Nanocircuit Characterization System for Research and Student Training
开发用于研究和学生培训的超高真空纳米电路表征系统
- 批准号:
0315830 - 财政年份:2003
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
MRI: Track 1 Development of a Dual-Comb Fluorescence-Detected Photothermal Mid-Infrared (DC-FPTIR) Microscope
MRI:轨道 1 双梳荧光检测光热中红外 (DC-FPTIR) 显微镜的开发
- 批准号:
2320751 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Equipment: MRI: Track # 2 Development of a high-speed super-resolution stimulated Raman scattering (SRS) microscope
设备: MRI:轨道
- 批准号:
2320437 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Continuing Grant
MRI: Development of a Machine Learning Multimodal Ultrafast Optical Microscope
MRI:机器学习多模态超快光学显微镜的开发
- 批准号:
2117616 - 财政年份:2021
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
MRI: Development of a Scanning Single-Electron Box Electrometer Microscope for Studying Materials for Quantum Science and Technology
MRI:开发用于研究量子科学和技术材料的扫描单电子盒静电计显微镜
- 批准号:
2117438 - 财政年份:2021
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
MRI: Development of a Sub-diffraction Limited Microscope for Imaging Ultrafast Dynamics from the Visible to Mid-infrared Spectral Range
MRI:开发亚衍射有限显微镜,用于对可见光到中红外光谱范围的超快动态成像
- 批准号:
2019083 - 财政年份:2020
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
MRI: Development of a high energy-loss electron spectrometry system with improved detection sensitivity for an advanced electron microscope
MRI:开发高能量损失电子能谱系统,提高先进电子显微镜的检测灵敏度
- 批准号:
2018683 - 财政年份:2020
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
MRI: Acquisition of a Multi-Modality Multi-Photon Digital Light Sheet Microscope in the Pacific Northwest to Support Bioengineering Research and Development
MRI:在太平洋西北部采购多模态多光子数字光片显微镜以支持生物工程研究和开发
- 批准号:
2018562 - 财政年份:2020
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
MRI: Development of a High-Speed Light-Sheet Light-Field Microscope for Imaging in Materials Sciences, Physics, and Biology
MRI:开发用于材料科学、物理和生物学成像的高速光片光场显微镜
- 批准号:
2019215 - 财政年份:2020
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
MRI: Development of an Ultra-high Sensitivity Scanning SQUID Multi-Function Microscope for Nanoscale Magnetometry, Susceptometry, and Thermometry
MRI:开发用于纳米级磁力测定、电纳测定和测温的超高灵敏度扫描 SQUID 多功能显微镜
- 批准号:
1920324 - 财政年份:2019
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
MRI: Development of a Scanning 4-Probe Microscope for Discovery and Characterization of Quantum Materials and Devices
MRI:开发用于发现和表征量子材料和器件的扫描 4 探针显微镜
- 批准号:
1828569 - 财政年份:2018
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant














{{item.name}}会员




