Heegaard splitting of 3-manifolds

3 流形的 Heegaard 分裂

基本信息

  • 批准号:
    1305613
  • 负责人:
  • 金额:
    $ 19.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

The PI plans to study topology of 3-manifolds, especially Heegaard splittings of 3-manifolds. The first part of the project is to investigate the relation between the Heegaard genus of a 3-manifold and the rank of its fundamental group. This research is built on the PI's recent success in constructing a hyperbolic counterexample to the Rank versus Genus Conjecture. The second goal of the proposed research is to answer a long-standing question in 3-manifold topology concerning Heegaard genus and a degree-one map. This question asks whether it is possible to have a degree-one map from a 3-manifold to another 3-manifold with larger Heegaard genus. This question is related to the Poincare Conjecture as well as a few other important questions in 3-manifold topology. The third part of the project is to solve a conjecture of Morimoto and Moriah on tunnel number of knots in the 3-sphere. The PI plans to develop new tools and use techniques from his previous work to achieve these goals.Three-manifolds are objects modeled on the 3-dimensional space that we are living in. A donut and the spatial universe are both examples of 3-manifolds. These objects arise naturally in many contexts in physical and other natural sciences and model many interesting phenomena. A geometric way of studying 3-manifolds is to cut a complicated 3-manifold into a pair of simpler 3-dimensional pieces called handebodies along a 2-dimensional surface. This decomposition is called a Heegaard splitting. The PI plans to study 3-manifolds using Heegaard splittings. The research targets several central questions in low-dimensional topology and knot theory, which has potential impact on other areas of scientific investigations, such as the topological structures of DNA.
PI计划研究3-流形的拓扑,特别是3-流形的Heegaard分裂。项目的第一部分是研究3-流形的Heegaard亏格与其基本群的秩间的关系。这项研究是建立在PI最近成功地构建了Rank对Genus猜想的双曲反例的基础上的。研究的第二个目的是回答三维流形拓扑中一个长期存在的关于Heegaard亏格和一次映射的问题。这个问题是问是否有可能有一个从一个三维流形到另一个三维流形的具有较大Heegaard亏格的一次映射。这个问题与Poincare猜想以及3-流形拓扑中的其他几个重要问题有关。项目的第三部分是解决Morimoto和Moriah关于3-球面上的隧道节数的一个猜想。这位PI计划开发新的工具并使用他以前工作中的技术来实现这些目标。三重流形是以我们所居住的三维空间为模型的物体。甜甜圈和空间宇宙都是3-流形的例子。这些物体在物理和其他自然科学中的许多背景下自然产生,并模拟了许多有趣的现象。研究三维流形的一种几何方法是沿着二维表面将复杂的三维流形切割成两个更简单的三维部件,称为手形。这种分解称为Heegaard分裂。PI计划使用Heegaard分裂来研究3-流形。这项研究针对低维拓扑和纽结理论中的几个核心问题,这对其他科学研究领域有潜在的影响,如DNA的拓扑结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Li其他文献

Evaluating liver function and the impact of immune checkpoint inhibitors in the prognosis of hepatocellular carcinoma patients: A systemic review and meta-analysis
评估肝功能和免疫检查点抑制剂对肝细胞癌患者预后的影响:系统评价和荟萃分析
  • DOI:
    10.1016/j.intimp.2022.109519
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Bao-Wen Tian;Lun-Jie Yan;Zi-Niu Ding;Hui Liu;Cheng-Long Han;Guang-Xiao Meng;Jun-Shuai Xue;Zhao-Ru Dong;Yu-Chuan Yan;Jian-Guo Hong;Zhi-Qiang Chen;Dong-Xu Wang;Tao Li
  • 通讯作者:
    Tao Li
Phosphorylation of GluN2B subunits of N-methyl-d-aspartate receptors in the frontal association cortex involved in morphine-induced conditioned place preference in mice
额叶联合皮层 N-甲基-d-天冬氨酸受体 GluN2B 亚基的磷酸化参与吗啡诱导的小鼠条件性位置偏好
  • DOI:
    10.1016/j.neulet.2020.135470
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gang Chen;Wei Han;Axiang Li;Jing Wang;Jing Xiao;Xin Huang;Khosa Asif Nazir;Qing Shang;Hongyan Qian;Chuchu Qiao;Xinshe Liu;Tao Li
  • 通讯作者:
    Tao Li
A novel negative selection algorithm based on subspace clustering
一种基于子空间聚类的负选择算法
Normal Dispersion Fiber-based Nonlinear Pulse Compressor for Generating 2-μm Watt-scale, ~100-MHz, Few-cycle Laser Pulse
基于正色散光纤的非线性脉冲压缩器,用于生成 2μm 瓦特级、~100MHz、少周期激光脉冲
Author-topic evolution analysis using three-way non-negative Paratucker
使用三向非负 Paratucker 进行作者主题演化分析
  • DOI:
    10.1145/1390334.1390521
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Peng;Tao Li
  • 通讯作者:
    Tao Li

Tao Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Li', 18)}}的其他基金

CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
  • 批准号:
    2422863
  • 财政年份:
    2024
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
  • 批准号:
    2245760
  • 财政年份:
    2023
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328828
  • 财政年份:
    2023
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323117
  • 财政年份:
    2023
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Rational design of Ni/Ga intermetallic compounds for efficient light alkanes conversion through ammonia reforming
合作研究:合理设计Ni/Ga金属间化合物,通过氨重整实现轻质烷烃的高效转化
  • 批准号:
    2210868
  • 财政年份:
    2022
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Reversible Formation of Sodium Hydrosulfide in Hybrid Electrolytes for High-Energy Density Storage
合作研究:了解用于高能量密度存储的混合电解质中硫氢化钠的可逆形成
  • 批准号:
    2208972
  • 财政年份:
    2022
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
  • 批准号:
    2120559
  • 财政年份:
    2021
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Enhancing Mobile VR/AR User Experience: An Integrated Architecture-System Approach
SHF:媒介:协作研究:增强移动 VR/AR 用户体验:集成架构系统方法
  • 批准号:
    1900713
  • 财政年份:
    2019
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design of a Novel Photo-Thermo-Catalyst for Enhanced Activity and Stability of Dry Reforming of Methane
合作研究:设计新型光热催化剂以增强甲烷干重整的活性和稳定性
  • 批准号:
    1924574
  • 财政年份:
    2019
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
Heegaard Splitting and Topology of 3-Manifolds
三流形的 Heegaard 分裂和拓扑
  • 批准号:
    1906235
  • 财政年份:
    2019
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Continuing Grant

相似国自然基金

深埋地下工程围岩劈裂破坏的能量耗散和形成机理研究
  • 批准号:
    50579033
  • 批准年份:
    2005
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on 3-manifolds by splitting and gluing
3-流形的分裂和粘合研究
  • 批准号:
    21K03244
  • 财政年份:
    2021
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis and comparison geometry on weighted manifolds
加权流形上的几何分析和比较几何
  • 批准号:
    20J11328
  • 财政年份:
    2020
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Heegaard Splitting and Topology of 3-Manifolds
三流形的 Heegaard 分裂和拓扑
  • 批准号:
    1906235
  • 财政年份:
    2019
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Continuing Grant
Heegaard splitting and surgery of 3-manifolds
Heegaard 分裂和三歧管手术
  • 批准号:
    1005556
  • 财政年份:
    2010
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Standard Grant
Geometric structure and combinatorial structure of 3-dimensional manifolds
3维流形的几何结构和组合结构
  • 批准号:
    22340013
  • 财政年份:
    2010
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric structures of 3-manifolds and various related structures
三流形的几何结构及各种相关结构
  • 批准号:
    17540077
  • 财政年份:
    2005
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on 3-manifolds by combinatorial and constructive methods
3-流形的组合和构造方法研究
  • 批准号:
    15540091
  • 财政年份:
    2003
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vector Bundles on Manifolds
流形上的向量束
  • 批准号:
    13640026
  • 财政年份:
    2001
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of 3-manifolds and geometric informations derived from them
3-流形的表示以及从它们导出的几何信息
  • 批准号:
    12640071
  • 财政年份:
    2000
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Combinatorial Structures of 3-Manifolds
3-流形组合结构的研究
  • 批准号:
    10640089
  • 财政年份:
    1998
  • 资助金额:
    $ 19.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了