Geometric structures of 3-manifolds and various related structures

三流形的几何结构及各种相关结构

基本信息

  • 批准号:
    17540077
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

In this research project, we obtained the following results.1. We defined a numerical invariant, called growth rate of tunnel numbers, of knots in 3-manifolds. For m-small knots, we obtained the following.Suppose K is a m-small knot in. a 3-manifold M. Let g = g(X)-g(M), and b_i (i =1,..., g) be the bridge index of K with respect to genus g(X) - i Heegaard surface of M. Then the growth rate of K is given by min_i=_<1,..., n>{1-i/(b_i)}.2. Heegaard splittings of exteriors of knots.・ Let K_1, K_2 be knots in 3-manifolds, and T_1,T_2 tunnel systems of K_1, K_2 respectively. We gave a necessary and sufficient condition for the tunnel system t_1 ∪ T_2 of K_1#K_2 giving a stabilized Heegaard splitting.・ For each natural number n, there exists a knot K such that the equality g(nK) = gt(K) holds, where nK denotes the connected sum of n copies of K. This implies the existence of counterexample to Morimoto's Conjecture concerning super additive phenomina of tunnel number of knots.3. We showed that for any link L in the 3-sphere, there is a Seifert surface S for L such that S is obtained from a disk by successively plumbing flat annuli, where all of the attaching regions are contained in the disk.4. We made research on Gersten's Problem : each automatic group is either (1) a finite group, (2) contains a free abelian group of rank 2. or (3) a word hyperbolic group.We showed that for the n-starred automatic groups this assertion holds.5. Growth function of 2-bridge link groupsWe made computar experiments on the growth functions of 2-bridge link groups, and posed conjectures on the structure of the growth functions.
在本研究项目中,我们取得了以下成果。我们定义了三维流形中纽结的一个数值不变量,称为隧道数增长率。对于m-小结,我们得到了如下结果:设K是m-小结。设g=g(X)-g(M),且bi(i=1,…,g)是K关于亏格g(X)-i Heegaard曲面的桥指数,则K的增长率由min_i=1,…,n&gt;{1-i/(Bi)}给出。结的外部的Heegaard分裂。设K_1,K_2是3-流形上的纽结,T_1,T_2分别是K_1,K_2的隧道系统。给出了K_1#K_2的隧道系统t_1-∪-T_2具有稳定Heegaard分裂的充要条件。对于每个自然数n,存在一个纽结K,使得等式g(NK)=gT(K)成立,其中NK表示K的n个副本的连通和。这意味着存在关于隧道节数的超加性现象的Morimoto猜想的反例。证明了对于3-球面上的任一环L,都有一个对应于L的塞弗特曲面S,使得S是通过连续地对平面环进行管道处理而从圆盘上获得的,其中所有的附着区都包含在圆盘中。我们研究了Gersten问题:每个自动机群是(1)一个有限群,(2)包含一个2阶的自由阿贝尔群,或(3)一个字双曲群。我们证明了对于n-星自动机群,这一断言成立。对两桥连接群的增长函数进行了计算实验,并对增长函数的结构提出了猜想。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Essential laminations and branched surfaces in the exteriors of links
链节外部的基本叠片和分支表面
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Brittenham;C.Hayashi;M.Hirasawa;T.Kobayashi;K.Shimokawa
  • 通讯作者:
    K.Shimokawa
On the growth rate of tunnel number of knots
论隧道节数增长率
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobayashi;Teiichi;Minyou Katagiri;T.Shibata;Tsuyoshi Kobayashi;T.Kobayashi;Tsuyoshi Kobayashi;S.Matsumoto;T.Inaba;Kazuhiro Ichihara;Tsuyoshi Kobayashi;Kazuhiro Ichihara;Tsuyoshi Kobayashi
  • 通讯作者:
    Tsuyoshi Kobayashi
A search method for a thin position of a link
一种链接细位置的搜索方法
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kobayashi;Y.Riek;Yasushi Yamashita;Yamashita Yasushi;M.Brittenham;Tsuyoshi Kobayashi
  • 通讯作者:
    Tsuyoshi Kobayashi
Drawing Bers embeddings of the Teichmu}ller space of once-punctured tori
绘制一次刺穿环面 Teichmuller 空间的 Bers 嵌入
Heegaard genus of the connected sum of m-small knots
  • DOI:
    10.4310/cag.2006.v14.n5.a8
  • 发表时间:
    2005-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsuyoshi Kobayashi;Y. Rieck
  • 通讯作者:
    Tsuyoshi Kobayashi;Y. Rieck
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBAYASHI Tsuyoshi其他文献

KOBAYASHI Tsuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBAYASHI Tsuyoshi', 18)}}的其他基金

Development of the novel molecular targeted therapy against hepatocellular carcinoma invasion and metastasis
新型抗肝细胞癌侵袭转移分子靶向治疗药物的研究进展
  • 批准号:
    21791288
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
On developments and applications of Heegaard theory
论Heegaard理论的发展与应用
  • 批准号:
    21540082
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on 3-manifolds based on geometric techniques and its expanse
基于几何技术的3-流形及其展开研究
  • 批准号:
    19540083
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on various geometric structures on 3-manifolds
3-流形上的各种几何结构研究
  • 批准号:
    15540073
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of 3-manifolds and geometric informations derived from them
3-流形的表示以及从它们导出的几何信息
  • 批准号:
    12640071
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial structures of low dimensional manifolds
低维流形的组合结构
  • 批准号:
    10640076
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Tunnel Number 1 Knots
隧道 1 节
  • 批准号:
    0802424
  • 财政年份:
    2008
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Research on tunnel number and unknotting tunnels of knots
结洞数及解结洞研究
  • 批准号:
    12640088
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了