CAREER: Arithmetic of Surfaces

职业:曲面算术

基本信息

  • 批准号:
    1352291
  • 负责人:
  • 金额:
    $ 40.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The PI will study the existence and distribution of rational points on algebraic surfaces defined over global fields. The proposed research has two mayor component projects. The first focuses on K3 surfaces: building on earlier work of the PI and his collaborators, and with a view towards arithmetic applications, the PI will pursue systematic, conceptual and practical methods to explicitly construct unramified Azumaya algebras representing transcendental Brauer classes on K3 surfaces. The second project focuses on del Pezzo surfaces: proving new cases of a conjecture of Colliot-Thélène and Sansuc that Brauer-Manin obstructions suffice to explain failures on local-to-global phenomena for del Pezzo surfaces, efficient computation of these obstructions on low-degree surfaces, and statistics on failures of the Hasse principle.An overarching theme in arithmetic geometry is the study of systems of polynomial equations in many variables, with the constraint that the coordinates of the solutions be rational numbers or integers (for example, 11/17, or -9). When no such solutions exist, one tries to understand the phenomena behind the absence of solutions. The geometry associated to a system of polynomials bears on the possible obstructions to the existence of solutions, and this project seeks to make such an intuition precise in some cases when a system of polynomial equations defines a surface. Although this project studies fundamental questions from a theoretical point of view, the structure of solutions to certain kinds of polynomial equations has well-documented applications (for example, in establishing secure protocols for the transmission of information between two parties that have never met). In addition to research activities, the PI will run a two-week program each summer for the duration of the grant. The goal of the program is to foster enrollment and persistence rates in STEM majors at the college level. The target demographic consists of rising 8th and 9th graders from the Houston Independent School District, including students from underrepresented groups in STEM fields. The content of the program is foundational material in the study of rational solutions to polynomial equations.
PI将研究在全局域上定义的代数曲面上有理点的存在性和分布。 拟议的研究有两个主要组成项目。第一个重点是K3曲面:建立在PI和他的合作者的早期工作,并着眼于算术应用,PI将追求系统的,概念性的和实用的方法来显式地构建非分歧的Azumaya代数,表示K3曲面上的超越Brauer类。第二个项目侧重于del Pezzo曲面:证明了Colliot-Thélène和Sanjiang猜想的新案例,即Brauer-Manin障碍足以解释del Pezzo曲面上局部到全局现象的失败,低次曲面上这些障碍的有效计算,以及Hasse原理失败的统计。算术几何中的一个首要主题是研究多变量多项式方程组,约束条件是解的坐标是有理数或整数(例如,11/17或-9)。当不存在这样的解决方案时,人们试图理解缺乏解决方案背后的现象。与多项式系统相关的几何关系可能会阻碍解的存在,而本项目试图在多项式方程系统定义曲面的某些情况下使这种直觉精确。虽然这个项目从理论的角度研究基本问题,但某些类型的多项式方程的解的结构有着很好的应用(例如,在建立从未见过的双方之间传输信息的安全协议方面)。除了研究活动外,PI还将在赠款期间每年夏天开展为期两周的项目。该计划的目标是促进大学一级STEM专业的入学率和坚持率。目标人群包括来自休斯顿独立学区的8年级和9年级学生,包括来自STEM领域代表性不足群体的学生。该程序的内容是研究多项式方程有理解的基础材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Varilly-Alvarado其他文献

Anthony Varilly-Alvarado的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Varilly-Alvarado', 18)}}的其他基金

Probabilistic approaches to Brauer groups and rationality problems
布劳尔群和理性问题的概率方法
  • 批准号:
    2302231
  • 财政年份:
    2023
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Continuing Grant
Level Structures on K3 Surfaces, and Constrained Rational Points on Log Fano Varieties
K3 曲面上的水平结构和 Log Fano 簇上的约束有理点
  • 批准号:
    1902274
  • 财政年份:
    2019
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Continuing Grant
Texas Algebraic Geometry Symposium
德克萨斯代数几何研讨会
  • 批准号:
    1101618
  • 财政年份:
    2011
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Standard Grant
Algebraic Surfaces: Rational points and Cox rings
代数曲面:有理点和 Cox 环
  • 批准号:
    1103659
  • 财政年份:
    2011
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Standard Grant

相似海外基金

Explicit Arithmetic of Hilbert Modular Surfaces
希尔伯特模曲面的显式算术
  • 批准号:
    1935534
  • 财政年份:
    2017
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Studentship
Study on unramified cohomology and algebraic surfaces over arithmetic fields of higher dimension
高维算术域上无枝上同调和代数曲面的研究
  • 批准号:
    15K17526
  • 财政年份:
    2015
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Line bundles on noncommutative algebraic and arithmetic surfaces
非交换代数和算术曲面上的线丛
  • 批准号:
    272768204
  • 财政年份:
    2015
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Research Fellowships
Implied volatility surfaces, local volatility models and low dimensional hedging strategies for arithmetic and geometric baskets
算术和几何篮子的隐含波动率表面、局部波动率模型和低维对冲策略
  • 批准号:
    435112-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Collaborative Research and Development Grants
Arithmetic aspects of Mordell-Weil lattices of elliptic K3 surfaces
椭圆 K3 表面 Mordell-Weil 格子的算术方面
  • 批准号:
    26400023
  • 财政年份:
    2014
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implied volatility surfaces, local volatility models and low dimensional hedging strategies for arithmetic and geometric baskets
算术和几何篮子的隐含波动率表面、局部波动率模型和低维对冲策略
  • 批准号:
    435112-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Collaborative Research and Development Grants
Arithmetic and the Abel Jacobi map on elliptic surfaces and their applications
椭圆面上的算术和阿贝尔雅可比图及其应用
  • 批准号:
    25610007
  • 财政年份:
    2013
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Symmetries of singular del Pezzo surfaces in algebraic and arithmetic geometry
代数和算术几何中奇德尔佩佐曲面的对称性
  • 批准号:
    239414690
  • 财政年份:
    2013
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Priority Programmes
Explicit methods for arithmetic on curves and surfaces
曲线和曲面算术的显式方法
  • 批准号:
    261486-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Discovery Grants Program - Individual
Implied volatility surfaces, local volatility models and low dimensional hedging strategies for arithmetic and geometric baskets
算术和几何篮子的隐含波动率表面、局部波动率模型和低维对冲策略
  • 批准号:
    435112-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 40.51万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了