RUI: Harmonic Analysis on Weighted Lebesgue Spaces
RUI:加权勒贝格空间的调和分析
基本信息
- 批准号:1362425
- 负责人:
- 金额:$ 10.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to further the research of the principal investigator (PI) in harmonic analysis, a branch of mathematics that is an area of active research and also one that is very important for its applications to a wide variety of problems in physics and engineering. The research will be conducted a Trinity College, a liberal arts college that focuses on undergraduate education but requires its faculty to maintain active research programs. This project will further the development of mathematical research at Trinity. Undergraduate students will be given the opportunity to participate in the project. This will help Trinity expand its undergraduate research programs to include mathematics. Undergraduate research enhances the quality of undergraduate education and better prepares students for advanced work in science, mathematics, and engineering. In particular, the PI (himself a Mexican-American) hopes to recruit women and members of underrepresented minority groups to participate in the research project, thereby increasing diversity in mathematics and the sciences.In this project the PI will study weighted norm inequalities in harmonic analysis. The goal is to further the recent work of the PI in three closely related areas: Rubio de Francia extrapolation, sharp constant estimates, and two-weight norm inequalities. Recent work by a number of mathematicians, including the PI, on sharp constant estimates with Muckenhoupt weights and extrapolation theory has yielded new results and a number of techniques that should be applicable to additional problems, including endpoint estimates for functions of bounded mean oscillation and extrapolation estimates for matrix weights. These results in turn will yield applications to regularity estimates for degenerate partial differential equations and to the study of variable Lebesgue spaces. The PI will also work on two-weight estimates, particularly on the separated bump conjecture for singular integrals and Riesz potentials.
该项目的目标是进一步研究的主要研究者(PI)在谐波分析,数学的一个分支,这是一个活跃的研究领域,也是一个非常重要的应用到各种各样的问题,在物理和工程。 这项研究将在Trinity College进行,这是一所文科学院,专注于本科教育,但要求其教师保持积极的研究计划。 这个项目将进一步发展数学研究在Trinity。本科生将有机会参与该项目。这将有助于Trinity扩大其本科研究计划,包括数学。 本科研究提高了本科教育的质量,更好地为学生在科学,数学和工程方面的高级工作做好准备。 特别是,PI(他本人是墨西哥裔美国人)希望招募女性和代表性不足的少数群体成员参与研究项目,从而增加数学和科学的多样性。在这个项目中,PI将研究调和分析中的加权范数不等式。 我们的目标是进一步的PI在三个密切相关的领域:鲁比奥德弗朗西亚外推,尖锐的常数估计,和两个权重范数不等式的最新工作。 最近的工作由一些数学家,包括PI,尖锐的常数估计与Muckenhoupt权重和外推理论已经产生了新的结果和一些技术,应适用于其他问题,包括端点估计的功能有界平均振荡和外推估计矩阵权重。 这些结果反过来将产生应用程序的正则性估计退化偏微分方程和变量勒贝格空间的研究。 PI还将研究两个权重估计,特别是奇异积分和Riesz势的分离凸点猜想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Cruz-Uribe其他文献
Matrix $$\mathcal {A}_p$$ Weights, Degenerate Sobolev Spaces, and Mappings of Finite Distortion
- DOI:
10.1007/s12220-015-9649-8 - 发表时间:
2015-10-26 - 期刊:
- 影响因子:1.500
- 作者:
David Cruz-Uribe;Kabe Moen;Scott Rodney - 通讯作者:
Scott Rodney
Weighted weak-type inequalities for maximal operators and singular integrals
- DOI:
10.1007/s13163-024-00492-7 - 发表时间:
2024-05-18 - 期刊:
- 影响因子:1.700
- 作者:
David Cruz-Uribe;Brandon Sweeting - 通讯作者:
Brandon Sweeting
On the continuity of minimizers for quasilinear functionals
- DOI:
10.1007/s10587-012-0020-y - 发表时间:
2012-03-25 - 期刊:
- 影响因子:0.500
- 作者:
David Cruz-Uribe;Patrizia Di Gironimo;Luigi D’Onofrio - 通讯作者:
Luigi D’Onofrio
The invertibility of the product of unbounded Toeplitz operators
- DOI:
10.1007/bf01679672 - 发表时间:
1994-06-01 - 期刊:
- 影响因子:0.900
- 作者:
David Cruz-Uribe - 通讯作者:
David Cruz-Uribe
The Calderón operator and the Stieltjes transform on variable Lebesgue spaces with weights
- DOI:
10.1007/s13348-019-00272-3 - 发表时间:
2019-11-11 - 期刊:
- 影响因子:0.500
- 作者:
David Cruz-Uribe;Estefanía Dalmasso;Francisco J. Martín-Reyes;Pedro Ortega Salvador - 通讯作者:
Pedro Ortega Salvador
David Cruz-Uribe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
- 批准号:
2349756 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Conference: Madison Lectures in Harmonic Analysis
会议:麦迪逊谐波分析讲座
- 批准号:
2337344 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
- 批准号:
2348797 - 财政年份:2024
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 10.58万 - 项目类别:
Continuing Grant
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
- 批准号:
2308417 - 财政年份:2023
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 10.58万 - 项目类别:
Standard Grant














{{item.name}}会员




