Low-Resistance Transparent Conductors Based on Co-Percolation in Hybrid Graphene/Nanowire Films

基于混合石墨烯/纳米线薄膜共渗透的低电阻透明导体

基本信息

  • 批准号:
    1408346
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

Title: Low-Resistance Transparent Conductors Based on Co-Percolation in Hybrid Graphene/Nanowire FilmsNon-technical: The program will investigate a new class of low-resistance transparent conducting electrodes based on assemblies of two-dimensional (2-D) and one-dimensional (1-D) materials, including single-layer graphene and metal nanowires. A well-integrated experimental and modeling effort will investigate electrical conductance and optical transmission properties as a function of material parameters, including nanowire density and graphene grain size. The proposed research will provide new understanding of conduction and contact properties in a materials system which could provide performance superior to indium tin oxide (ITO), using more earth-abundant materials and physical advantages including flexibility. The insights from the proposed work can be applied to advanced photovoltaic devices, transparent circuitry, light emitting diodes, displays or detectors/imagers.Technical: The proposed program will investigate a new class of low-resistance transparent conducting electrodes based on co-percolating conduction in hybrid graphene/nanowire networks. In large-area graphene layers and metal nanowire networks, conduction is via percolation, with high-resistance grain boundaries or nanowire junctions limiting the sheet conductance. Hybrid graphene/nanowire systems can significantly reduce the sheet resistance, via percolation doping, in which metal nanowires bridge the grain boundaries, or, via co-percolation, in which the nanowires provide a second, coupled percolation path so that transport bottleneck of one layer are bridged by the other network. Proof of concept experiments have shown that sheet resistances of 20 Ohms/square can be achieved at optical transmittances of 90% in hybrid networks operating in the co-percolation limit, with stable performance observed over several months. In this program, a well-integrated experimental and modeling effort will address two themes. The first theme will focus on understanding the conduction mechanisms and relationship between structure and electronic/optical properties in hybrid graphene/nanowire networks tuned between percolation doping and co-percolation limits. The second theme will focus on understanding the contact properties between these hybrid networks and "device" layers including materials of interest for organic photovoltaic devices or thin-film transistors. This theme will apply the transparent conducting electrodes to contact structures of interest for photovoltaic and transistor devices in order to study potential performance improvements. The intellectual merits of the program include exploration of the conduction and contact properties in a new class of nanostructured 2D-1D hybrids of graphene and metal nanowires to address the fundamental limits of these materials. The well-integrated experimental and modeling efforts will explore the parameter-space of the composite to provide insights into the nature of the conduction in such coupled systems, contact properties to relevant device layers, and pathways toward improved sheet resistance versus transparency relationships. In addition to standard electrical, optical and structural characterization techniques, the experimental effort will utilize thermo-reflectance imaging to provide information on current pathways and bulk versus junction effects within the networks. The modeling effort builds on unique capabilities for understanding nanoscale electronic transport in disordered systems as well as fundamental models of nanostructured/organic photovoltaic devices. The broader impacts of the program include an integrated education and outreach program aimed at addressing challenges in nanotechnology-related education/training arising from the interdisciplinary nature of many of the projects, and aimed at providing opportunities for participants from under-represented groups. The proposed program includes i) development of modules for a "Nanohub-U" course, accessible worldwide, ii) integrated research and professional development experiences for undergraduates, and iii) a research and technology symposium focused on transparent conducting electrodes.
职务名称:基于混合石墨烯/纳米线薄膜中共渗滤的低电阻透明导体非技术:该计划将研究一类新的基于二维(2-D)和一维(1-D)材料组装的低电阻透明导电电极,包括单层石墨烯和金属纳米线。一个良好的综合实验和建模工作将调查电导和光传输特性作为材料参数的函数,包括纳米线密度和石墨烯晶粒尺寸。拟议的研究将提供对材料系统中的导电和接触特性的新理解,该材料系统可以提供比氧化铟锡(ITO)更上级的性能,使用更多的地球丰富的材料和包括柔性在内的物理优势。从拟议的工作的见解可以应用到先进的光伏器件,透明电路,发光二极管,显示器或检测器/imagers.Technical:拟议的计划将研究一类新的低电阻透明导电电极的基础上共掺杂导电的混合石墨烯/纳米线网络。在大面积石墨烯层和金属纳米线网络中,导电是通过渗透,高电阻晶界或纳米线结限制了片电导。混合石墨烯/纳米线系统可以通过渗滤掺杂显著降低薄层电阻,其中金属纳米线桥接晶界,或者通过共渗滤,其中纳米线提供第二耦合渗滤路径,使得一层的传输瓶颈被另一网络桥接。概念验证实验表明,在共渗滤极限下操作的混合网络中,在90%的光学透射率下可以实现20欧姆/平方的薄层电阻,并且在几个月内观察到稳定的性能。在该计划中,高度集成的实验和建模工作将解决两个主题。第一个主题将侧重于理解混合石墨烯/纳米线网络的导电机制和结构与电子/光学性质之间的关系,这些网络在渗透掺杂和共渗透极限之间进行调整。第二个主题将侧重于理解这些混合网络和“器件”层之间的接触特性,包括有机光伏器件或薄膜晶体管的材料。本主题将把透明导电电极应用于光伏和晶体管器件的感兴趣的接触结构,以研究潜在的性能改进。该计划的智力优势包括探索石墨烯和金属纳米线的新型纳米结构2D-1D混合物的导电和接触特性,以解决这些材料的基本限制。良好集成的实验和建模工作将探索复合材料的参数空间,以深入了解此类耦合系统中的传导性质,相关器件层的接触特性以及改善薄层电阻与透明度关系的途径。除了标准的电学、光学和结构表征技术外,实验工作还将利用热反射成像来提供有关网络内电流路径和体效应与结效应的信息。建模工作建立在理解无序系统中纳米级电子输运的独特能力以及纳米结构/有机光伏器件的基本模型的基础上。该计划的更广泛的影响包括一个综合的教育和推广计划,旨在解决纳米技术相关的教育/培训的挑战,这些挑战来自许多项目的跨学科性质,并旨在为代表性不足的群体的参与者提供机会。拟议的计划包括i)模块的开发“Nanohub-U”课程,在全球范围内访问,ii)本科生的综合研究和专业发展经验,以及iii)研究和技术研讨会侧重于透明导电电极。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Janes其他文献

Rectifying current behaviours
纠正当前行为
  • DOI:
    10.1038/nchem.429
  • 发表时间:
    2009-11-01
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    David Janes
  • 通讯作者:
    David Janes

David Janes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Janes', 18)}}的其他基金

IUCRC Planning Grant Purdue University: Center for Interface Sciences for Emerging Devices & Systems (CISEDS)
IUCRC 规划资助普渡大学:新兴设备接口科学中心
  • 批准号:
    2209853
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Thin-Film Transistors for Flexible Displays and RFID Applications
用于柔性显示器和 RFID 应用的薄膜晶体管
  • 批准号:
    1202281
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER:Exploring Core-Shell Nanowire Structures for Low-Noise Transistors
EAGER:探索低噪声晶体管的核壳纳米线结构
  • 批准号:
    1118934
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NIRT: Molecule/Semiconductor Heterostructure Devices
NIRT:分子/半导体异质结构器件
  • 批准号:
    0506802
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Student Travel Support for 2003 IEEE Nanotechnology Conference: August 12-14, 2003 San Francisco, CA.
2003 年 IEEE 纳米技术会议学生旅行支持:2003 年 8 月 12 日至 14 日,加利福尼亚州旧金山。
  • 批准号:
    0320101
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NER: Investigation of Electronic Transport in Carbon Nanotubes Using an Ultrafast Photoconduction Technique
NER:使用超快光电导技术研究碳纳米管中的电子传输
  • 批准号:
    0103227
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RIA: Experimental Study of Coulomb Blockade Devices
RIA:库仑封锁装置的实验研究
  • 批准号:
    9110980
  • 财政年份:
    1991
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Naringin通过改善Leptin Resistance调节肠上皮AQP3重建糖脂代谢平衡的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
E-cadherin调控卵巢癌细胞anoikis-resistance的分子机制及干预
  • 批准号:
    81172487
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
  • 批准号:
    2349311
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Role of CD206 surface antigen on M2 macrophages in the development of insulin resistance in the diet-induced obese mice model
M2巨噬细胞上CD206表面抗原在饮食诱导肥胖小鼠模型胰岛素抵抗发展中的作用
  • 批准号:
    24K19282
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Intended and unintended consequences of the ZnO ban from pig diets on antimicrobial resistance, post-weaning diarrhoea and the microbiome
猪日粮中禁用氧化锌对抗菌素耐药性、断奶后腹泻和微生物组的有意和无意的影响
  • 批准号:
    BB/Y003861/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Engineering Nature-based Solutions to Tackle Antimicrobial Resistance
工程基于自然的解决方案来解决抗菌素耐药性
  • 批准号:
    EP/Y003101/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
The epidemiology of transmissible antimicrobial resistance among Shigella species
志贺菌属中传播性抗菌药物耐药性的流行病学
  • 批准号:
    MR/X000648/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Glutamate-Energetics In Schizophrenia And Treatment Resistance
精神分裂症中的谷氨酸能量学和治疗抵抗
  • 批准号:
    MR/X021696/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
RII Track-4: @NASA: Investigation of Erosive Wear Resistance of Ceramic Parts Produced by Additive Manufacturing
RII Track-4:@NASA:增材制造生产的陶瓷零件的耐冲蚀磨损性能研究
  • 批准号:
    2327252
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Identification of genes responsible for the resistance to first line anti-myeloma therapeutics
鉴定导致一线抗骨髓瘤治疗耐药的基因
  • 批准号:
    24K11532
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Turning defects into allies to develop intrinsic resistance to hydrogen-induced fractures (ResistHfracture)
化缺陷为盟友,增强对氢致断裂的内在抵抗力 (ResistHfracture)
  • 批准号:
    EP/Y037219/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了