In-situ Electron Microscopy of Memristive Devices

忆阻器件的原位电子显微镜

基本信息

  • 批准号:
    1409068
  • 负责人:
  • 金额:
    $ 44.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

This project is jointly funded by the Electronic and Photonic Materials Program and the Ceramics Program, both in the Division of Materials Research.Non-technical Description: This project addresses fundamental materials science mechanisms responsible for the reversible and nonvolatile changes of resistivity in resistive switching devices used in novel high-density computer memories. The research activities rely to large extent on advanced electron microscopy techniques. Better understanding of such mechanisms allows for improved quality and reliability of resistive switches and thus leads to more powerful computers. The project involves graduate and undergraduate students at Carnegie Mellon University. Each year, two freshmen work on semester-long research projects involving memristors, through a university-funded program. One of them is expected to continue the research to senior year with a fellowship from the Semiconductor Research Corporation. Principal Investigators actively collaborate with semiconductor companies such as GlobalFoundries, Applied Materials, and Intel. The collaboration brings summer internship opportunities for graduate and undergraduate students in the project. Technical Description: This project explores the fundamental mechanisms of bipolar resistive switching phenomena in metal/oxide/metal systems. It is known that the small diameter conducting filament forms in the high resistance functional oxide film during a conditioning process referred to as electroforming. The model of electroforming and resistive switching developed during the PI's prior NSF project asserts that either one of these processes has two stages. In the first stage, the electron transport instability leads to appearance of negative differential resistance in the device characteristics, which in turn causes formation of the high current density filament. This stage of the filament formation is fully reversible, i.e., the filament dissolves if the voltage is reduced. If the current density exceeds a critical value, in the second stage the localized Joule heating leads to nonvolatile changes in the oxide structure. This project focuses on the fundamental mechanisms in both stages of filament formation using advanced electron microscopy techniques, i.e., in-situ imaging of the nanoscale metal-insulator-metal devices under bias. The imaging techniques include electron energy loss spectroscopy, differential diffraction, high-angle annular dark field, and electron holography, in collaboration with Arizona State University. The experimental findings are used to delineate several possible mechanisms of electronic instability and to assess the nature of the nonvolatile changes in the oxide layer.
本项目由材料研究部电子与光子材料项目和陶瓷项目共同资助。非技术描述:该项目解决了用于新型高密度计算机存储器的电阻开关器件中电阻率可逆和非易失性变化的基本材料科学机制。研究活动在很大程度上依赖于先进的电子显微镜技术。更好地理解这种机制可以提高电阻开关的质量和可靠性,从而导致更强大的计算机。该项目涉及卡内基梅隆大学的研究生和本科生。每年,两名大一新生通过大学资助的项目进行为期一个学期的涉及忆阻器的研究项目。其中一人有望获得半导体研究公司(Semiconductor research Corporation)的奖学金,继续研究到大四。主要研究人员积极与半导体公司合作,如GlobalFoundries,应用材料和英特尔。此次合作为研究生和本科生提供了暑期实习的机会。技术描述:本项目探索金属/氧化物/金属系统中双极电阻开关现象的基本机制。众所周知,在称为电铸的调节过程中,在高电阻功能氧化膜中形成小直径导电丝。在PI之前的NSF项目中开发的电铸和电阻开关模型断言,这些过程中的任何一个都有两个阶段。在第一阶段,电子输运不稳定导致器件特性中出现负差分电阻,从而导致高电流密度灯丝的形成。灯丝形成的这个阶段是完全可逆的,也就是说,如果电压降低,灯丝就会溶解。如果电流密度超过临界值,在第二阶段,局部焦耳加热导致氧化物结构发生非挥发性变化。本项目着重于利用先进的电子显微镜技术研究灯丝形成的两个阶段的基本机制,即在偏压下对纳米级金属-绝缘体-金属器件进行原位成像。成像技术包括电子能量损失光谱,微分衍射,高角度环形暗场和电子全息,与亚利桑那州立大学合作。实验结果用于描述几种可能的电子不稳定性机制,并评估氧化层中非挥发性变化的性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marek Skowronski其他文献

FOR MULTI – SKILL RESOURCE – CONSTRAINED PROJECT SCHEDULING PROBLEM
针对多技能资源受限的项目调度问题
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Myszkowski;Marek Skowronski
  • 通讯作者:
    Marek Skowronski
iMOPSE: a library for bicriteria optimization in Multi-Skill Resource-Constrained Project Scheduling Problem
iMOPSE:多技能资源受限项目调度问题中双标准优化的库
  • DOI:
    10.1007/s00500-017-2997-5
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    P. Myszkowski;Maciej Laszczyk;Ivan Nikulin;Marek Skowronski
  • 通讯作者:
    Marek Skowronski

Marek Skowronski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marek Skowronski', 18)}}的其他基金

Thermal mapping of current density in filamentary switching devices
丝状开关器件中电流密度的热图
  • 批准号:
    2208488
  • 财政年份:
    2022
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Standard Grant
Electron Microscopy and Modeling of Resistive Switching Devices Based on TaOx
基于 TaOx 的电阻开关器件的电子显微镜和建模
  • 批准号:
    1905648
  • 财政年份:
    2019
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Continuing Grant
Dopant Distribution, Motion, and Electrochemical Transfer in Resistive Switching Heterostructures
电阻开关异质结构中的掺杂剂分布、运动和电化学转移
  • 批准号:
    1105291
  • 财政年份:
    2011
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Continuing Grant
Mechanisms of Extended Defect Nucleation During PVT Growth of Silicon Carbide
碳化硅PVT生长过程中扩展缺陷形核的机制
  • 批准号:
    9903702
  • 财政年份:
    1999
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Standard Grant
Molecular Doping of Semiconductors: Lanthanide-impurity Complexes for Light Emitting Diodes
半导体的分子掺杂:用于发光二极管的镧系元素杂质配合物
  • 批准号:
    9202683
  • 财政年份:
    1992
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Continuing Grant
Atomic Structure of Oxygen Induced Defects in Aluminum Gallium Arsenide Epilayers
铝砷化镓外延层氧致缺陷的原子结构
  • 批准号:
    9024401
  • 财政年份:
    1991
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Muon--electron转换过程的实验研究
  • 批准号:
    11335009
  • 批准年份:
    2013
  • 资助金额:
    360.0 万元
  • 项目类别:
    重点项目

相似海外基金

High speed multi modal in-situ Transmission Electron Microscopy platform
高速多模态原位透射电子显微镜平台
  • 批准号:
    LE240100060
  • 财政年份:
    2024
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Elucidation of twin nucleation mechanisms with in-situ high-resolution transmission electron microscopy mechanical testing
通过原位高分辨率透射电子显微镜机械测试阐明双成核机制
  • 批准号:
    22KJ1150
  • 财政年份:
    2023
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Discovering Novel Properties in Few-Layer MXenes Using Analytical, In-Situ Scanning Transmission Electron Microscopy
使用分析原位扫描透射电子显微镜发现少层 MXene 的新特性
  • 批准号:
    2309396
  • 财政年份:
    2023
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Continuing Grant
Quantitative structural characterization and property measurements of materials by in situ electron microscopy
原位电子显微镜对材料的定量结构表征和性能测量
  • 批准号:
    RGPIN-2019-06444
  • 财政年份:
    2022
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Discovery Grants Program - Individual
Aquisition of a confocal cryo-light microscope for correlative light and electron microscopy
获取用于关联光学和电子显微镜的共焦冷冻光学显微镜
  • 批准号:
    10796557
  • 财政年份:
    2022
  • 资助金额:
    $ 44.38万
  • 项目类别:
An in-situ and multiscale scanning electron microscopy suite
原位多尺度扫描电子显微镜套件
  • 批准号:
    LE220100165
  • 财政年份:
    2022
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
New strategies for molecular cell-type labeling in volume electron microscopy
体积电子显微镜中分子细胞类型标记的新策略
  • 批准号:
    10413454
  • 财政年份:
    2022
  • 资助金额:
    $ 44.38万
  • 项目类别:
The Formation of Combustion Generated Particles: Using In situ Electron Microscopy to Advance our Understanding and Modeling
燃烧产生的颗粒的形成:利用原位电子显微镜促进我们的理解和建模
  • 批准号:
    RGPIN-2020-06136
  • 财政年份:
    2022
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Discovery Grants Program - Individual
In-situ annealing observation of inhomogeneous dislocation network by auto-tuned weak-beam transmission electron microscopy
自调谐弱束透射电子显微镜对不均匀位错网络的原位退火观察
  • 批准号:
    22K04981
  • 财政年份:
    2022
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantitative structural characterization and property measurements of materials by in situ electron microscopy
原位电子显微镜对材料的定量结构表征和性能测量
  • 批准号:
    RGPIN-2019-06444
  • 财政年份:
    2021
  • 资助金额:
    $ 44.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了