SHF: Small: Advanced Digital Signal Processing with DNA
SHF:小型:采用 DNA 的先进数字信号处理
基本信息
- 批准号:1423407
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop techniques for implementing computation in general, and advanced digital signal processing operations in particular, using molecular reactions in general, and DNA-based reactions in particular. Just as electronic systems implement computation in terms of voltage (energy per unit charge), one can conceive of molecular systems that compute in terms of chemical concentrations (molecules per unit volume). This proposal will explore techniques for implementing a variety of computational constructs such as logic, memory, arithmetic, and signal processing. A technique called DNA strand displacement is the target experimental chassis. The impetus for this research is not computation per se. Molecular computation will never compete with conventional computers made of silicon integrated circuits for tasks such as number crunching. Chemical systems are inherently slow and messy, taking minutes or even hours to finish, and producing fragmented results. Rather, the goal is to create "embedded controllers" - viruses and bacteria that are engineered to perform useful molecular computation in situ where it is needed, for instance in drug delivery and biochemical sensing applications.The digital circuit design community has unique expertise that can be brought to bear on the challenging design problems encountered in synthetic biology. Applications in biology, in turn, offer a wealth of interesting problems in algorithmic development. With its cross-disciplinary emphasis, this project will bring new perspectives to both fields. If successful, the proposed research will transform disciplines such as genetic engineering of drug-delivery systems. Currently, a costly and ineffective ad-hoc approach prevails. With robust techniques for implementing operations such as digital signal processing, much more effective systems will be developed. An important goal of the project is to communicate the impetus for interdisciplinary research to a wide audience. Building upon current research efforts that include female students, underrepresented students will be recruited into the project.This proposal will build on the success of prior work, exploring the implementation of complex signal processing functions for both discrete-time and digital signal processing applications with DNA. The project will develop synthesis techniques for molecular implementations of signal processing functions such as finite-impulse response (FIR) and infinite impulse response (IIR) digital filters, fast Fourier transforms (FFT), and power spectral density (PSD) computations. A major component of this project is to study how to implement analog-to-digital (A/D) and digital-to-analog (D/A) conversion with molecular reactions. A distinction will be made between discrete-time signal processing and digital signal processing. While signals are sampled periodically in both systems, the signal is represented as an analog value in the former while the signal is quantized to a digital value in the latter. Each has its advantages. Discrete-time signal processing systems are similar to sampled data systems and require lower molecular concentrations; however, the resolution cannot be precisely controlled. Digital systems are more precise, but require higher molecular concentrations.Specific research thrusts are as follows. Firstly, a complete digital signal processing system will be demonstrated. Such a system will contain A/D and D/A converters and will implement a full repertoire of complex operations. Secondly, the project will develop faster implementations of both discrete-time and digital signal processing systems. The main bottleneck in prior discrete-time signal processing implementations has been speed. In contrast to electronic systems, where the speed is limited by changes in electric charge, the speed in molecular systems is limited by changes in molecular concentrations, which are inherently slow. The project will develop new scheduling approaches where multiple computations are mapped to different phases of transfer. The computation will be synchronous, with molecular transfers synchronized by a "clock", implemented through sustained chemical oscillations. The new scheduling approaches will allow computation of parallel outputs without increasing the number of delay transfer reactions. Reducing currently achievable sample periods from 40-80 hours to 4-8 hours will enable experimental demonstration of some example signal processing functions using DNA. Finally, the project will investigate tradeoffs in discrete-time and digital implementations of signal processing functions with respect to speed, accuracy, and robustness. Detailed studies of the system properties and behaviors will be performed, e.g., how the resolution correlates with changing molecular concentrations and how robust the designs are to parametric variations.
该项目将开发用于实现一般计算、特别是高级数字信号处理操作的技术,一般使用分子反应,特别是基于 DNA 的反应。 正如电子系统根据电压(每单位电荷的能量)进行计算一样,我们可以设想根据化学浓度(每单位体积的分子)进行计算的分子系统。该提案将探索实现各种计算结构的技术,例如逻辑、内存、算术和信号处理。一种称为 DNA 链置换的技术是目标实验底盘。这项研究的动力并不是计算本身。在数字运算等任务上,分子计算永远无法与由硅集成电路制成的传统计算机竞争。化学系统本质上是缓慢且混乱的,需要几分钟甚至几小时才能完成,并产生支离破碎的结果。相反,我们的目标是创建“嵌入式控制器”——病毒和细菌,它们被设计为在需要的地方进行有用的分子计算,例如在药物输送和生化传感应用中。数字电路设计社区拥有独特的专业知识,可以用来解决合成生物学中遇到的具有挑战性的设计问题。反过来,生物学中的应用为算法开发提供了大量有趣的问题。由于其跨学科的重点,该项目将为这两个领域带来新的视角。 如果成功,拟议的研究将改变药物输送系统基因工程等学科。目前,普遍采用成本高昂且低效的临时方法。借助用于实现数字信号处理等操作的强大技术,将开发出更有效的系统。该项目的一个重要目标是向广大受众传达跨学科研究的动力。在当前包括女学生在内的研究工作的基础上,该项目将招募代表性不足的学生。该提案将建立在先前工作的成功基础上,探索利用 DNA 实现离散时间和数字信号处理应用的复杂信号处理功能。 该项目将开发用于分子实现信号处理功能的合成技术,例如有限脉冲响应(FIR)和无限脉冲响应(IIR)数字滤波器、快速傅立叶变换(FFT)和功率谱密度(PSD)计算。 该项目的一个主要组成部分是研究如何通过分子反应实现模数(A/D)和数模(D/A)转换。离散时间信号处理和数字信号处理之间存在区别。虽然在两个系统中都会定期对信号进行采样,但在前者中信号被表示为模拟值,而在后者中信号被量化为数字值。每个都有其优点。离散时间信号处理系统与采样数据系统类似,需要较低的分子浓度;然而,分辨率无法精确控制。数字系统更精确,但需要更高的分子浓度。具体研究重点如下。首先,将演示一个完整的数字信号处理系统。这样的系统将包含 A/D 和 D/A 转换器,并将执行完整的复杂操作。其次,该项目将开发更快的离散时间和数字信号处理系统的实现。先前离散时间信号处理实现的主要瓶颈是速度。电子系统的速度受到电荷变化的限制,而分子系统的速度则受到分子浓度变化的限制,分子浓度的变化本身就很慢。该项目将开发新的调度方法,将多个计算映射到传输的不同阶段。计算将是同步的,分子转移由“时钟”同步,通过持续的化学振荡实现。新的调度方法将允许计算并行输出,而无需增加延迟传输反应的数量。将目前可实现的采样周期从 40-80 小时减少到 4-8 小时,将使使用 DNA 的一些示例信号处理功能的实验演示成为可能。最后,该项目将研究信号处理功能的离散时间和数字实现在速度、准确性和鲁棒性方面的权衡。将对系统特性和行为进行详细研究,例如,分辨率如何与分子浓度变化相关,以及设计对参数变化的鲁棒性如何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshab Parhi其他文献
Keshab Parhi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keshab Parhi', 18)}}的其他基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243053 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1954749 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
- 批准号:
1814759 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Low-Energy Architectures for Machine Learning
EAGER:机器学习的低能耗架构
- 批准号:
1749494 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SaTC: STARSS: Design of Secure and Anti-Counterfeit Integrated Circuits
SaTC:STARSS:安全防伪集成电路设计
- 批准号:
1441639 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small: Digital Signal Processing using Stochastic Computing
SHF:小型:使用随机计算的数字信号处理
- 批准号:
1319107 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small :Digital Signal Processing with Biomolecular Reactions
SHF:小型:生物分子反应的数字信号处理
- 批准号:
1117168 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Synthesizing Signal Processing Functions with Biochemical Reactions
EAGER:利用生化反应综合信号处理功能
- 批准号:
0946601 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPA-DA: Noise-Aware VLSI Signal Processing: A New Paradigm for Signal Processing Integrated Circuit Design in Nanoscale Era
合作研究:CPA-DA:噪声感知VLSI信号处理:纳米时代信号处理集成电路设计的新范式
- 批准号:
0811456 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Design of High-Speed DSPTransceivers for Ethernet over Copper
铜缆以太网高速 DSP 收发器的设计
- 批准号:
0429979 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
- 批准号:
10481965 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
SBIR Phase I: CAS: Advanced Thermal Oxidizer to Cost-effectively Control Greenhouse Emissions from Small Sources
SBIR 第一阶段:CAS:先进的热氧化器,可经济高效地控制小源温室气体排放
- 批准号:
2326861 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Defining mechanisms of blood-brain barrier dysfunction in cerebral small vessel disease using advanced 3D in vitro models.
使用先进的 3D 体外模型定义脑小血管疾病血脑屏障功能障碍的机制。
- 批准号:
MR/W027119/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
- 批准号:
10591304 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
SBIR Phase II: Accelerating R&D through Streamlined Machine Learning Algorithms for Small Data Applications in Advanced Manufacturing
SBIR 第二阶段:加速 R
- 批准号:
2325045 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cooperative Agreement
Development of a novel small molecule RPN13 inhibitor and therapeutic for advanced ovarian cancer patients
开发新型小分子 RPN13 抑制剂和治疗晚期卵巢癌患者的药物
- 批准号:
10760824 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
CyberTraining: Implementation: Small: Infrastructure Cybersecurity Curriculum Development and Training for Advanced Manufacturing Research Workforce
网络培训:实施:小型:基础设施网络安全课程开发和先进制造研究人员培训
- 批准号:
2230025 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Advanced Small Animal Ultrasound Imaging - Vevo F2
先进的小动物超声成像 - Vevo F2
- 批准号:
10632878 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Impact of lower airway microbiota in advanced non-small cell lung cancer patients treated PD-1/PD-L1 blocade: A Biomarker Study
下呼吸道微生物群对接受 PD-1/PD-L1 抑制剂治疗的晚期非小细胞肺癌患者的影响:一项生物标志物研究
- 批准号:
22K20839 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Establishment of radiotherapy technique to minimise the risk of radiation pneumonitis in locally advanced non-small cell lung cancer.
建立放射治疗技术,以尽量减少局部晚期非小细胞肺癌发生放射性肺炎的风险。
- 批准号:
22K20856 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




