EAGER: Low-Energy Architectures for Machine Learning
EAGER:机器学习的低能耗架构
基本信息
- 批准号:1749494
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning systems and classifiers will be part of future smart devices. Industrial internet-of-things (IIOT) and cyber-physical systems (CPS) will be equipped with real-time feature extraction and classification to provide feedback and/or warning signals in some cases. Smart medical devices can analyze signals and trigger therapy to improve human health. Security systems can analyze activity data and thwart planned attacks. Reducing energy consumption in these smart devices is critical for increasing battery life in portable applications. This proposal addresses techniques to reduce energy consumption in feature extraction and classification. The broader impacts will be in demonstrating a new approach for feature extraction and classification with significantly less energy consumption without degrading sensitivity and specificity, along with training and educating graduate and undergraduate students in related disciplines through laboratory and computational experiences.The proposed framework computes features and classifies the test data using a simple level-1 classifier that makes use of low precision. If the classification is successful, then the process terminates. Otherwise the level-2 classifier is invoked. The level-2 classifier makes use of higher precision for the feature extraction and classification; however, it reuses the low-precision results of the level-1 classifier. The process is repeated in an iterative manner until the test sample is classified with a high probability. The proposed approach differs from existing approaches in the sense that the classifier at a certain level is trained using only the training samples that do not contain the samples that were correctly classified in prior levels. The precision at the different levels of feature extraction and classification are the same for both training and test phases. This is expected to lead to higher classification accuracy. The features and classifiers are computed using approximate computing in an incremental manner. Other innovative aspects include: selection of classes of features that require less energy (e.g., time-domain vs. frequency-domain), ranking of these features using techniques such as minimally-redundant maximally-relevant (mRMR) and use of classifiers such as classification and regression tree (CART) or AdaBoost. Approximate computing of features and classifiers in an incremental manner will be investigated to reduce overall energy consumption while maintaining high sensitivity and specificity. Training of the P-Boost classifier and testing the classifier will be based on same precision; thus there is no disconnect between the precision of the classifiers used for training and testing. The proposed "holistic" approach is likely to result in significant savings in energy consumption compared to state-of-the-art machine learning systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习系统和分类器将成为未来智能设备的一部分。工业物联网(IIOT)和网络物理系统(CPS)将配备实时特征提取和分类,以在某些情况下提供反馈和/或警告信号。智能医疗设备可以分析信号并触发治疗,以改善人类健康。安全系统可以分析活动数据并阻止有计划的攻击。降低这些智能设备的能耗对于延长便携式应用中的电池寿命至关重要。该提案涉及减少特征提取和分类中的能量消耗的技术。更广泛的影响将是在展示一种新的方法,在不降低灵敏度和特异性的情况下,显著降低能耗的特征提取和分类,沿着培训和教育研究生和本科生在相关学科通过实验室和计算experiences.The建议的框架计算功能和分类的测试数据使用一个简单的1级分类器,利用低精度。如果分类成功,则该过程终止。否则调用第2级分类器。第二级分类器利用较高的精度进行特征提取和分类,然而,它重用了第一级分类器的低精度结果。以迭代方式重复该过程,直到测试样本以高概率被分类。所提出的方法不同于现有的方法,在这个意义上,在一定程度上的分类器的训练只使用不包含在先前的水平被正确分类的样本的训练样本。对于训练和测试阶段,在不同级别的特征提取和分类的精度是相同的。预计这将导致更高的分类精度。特征和分类器使用近似计算以增量方式计算。其他创新方面包括:选择需要较少能量的特征类别(例如,时域与频域),使用诸如最小冗余最大相关(mRMR)的技术对这些特征进行排序,以及使用诸如分类和回归树(CART)或AdaBoost的分类器。将研究以增量方式近似计算特征和分类器,以降低总体能耗,同时保持高灵敏度和特异性。P-Boost分类器的训练和分类器的测试将基于相同的精度;因此,用于训练和测试的分类器的精度之间没有脱节。与最先进的机器学习系统相比,拟议的“整体”方法可能会显著节省能源消耗。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-Energy Architectures of Linear Classifiers for IoT Applications using Incremental Precision and Multi-Level Classification
使用增量精度和多级分类的物联网应用线性分类器的低能耗架构
- DOI:10.1145/3194554.3194603
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Koteshwara, Sandhya;Parhi, Keshab K.
- 通讯作者:Parhi, Keshab K.
Incremental-Precision based Feature Computation and Multi-Level Classification for Low-Energy Internet-of-Things
基于增量精度的低能耗物联网特征计算和多级分类
- DOI:10.1109/jetcas.2018.2836319
- 发表时间:2018
- 期刊:
- 影响因子:4.6
- 作者:Koteshwara, Sandhya;Parhi, Keshab K.
- 通讯作者:Parhi, Keshab K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshab Parhi其他文献
Keshab Parhi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keshab Parhi', 18)}}的其他基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243053 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1954749 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
- 批准号:
1814759 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
SHF: Small: Advanced Digital Signal Processing with DNA
SHF:小型:采用 DNA 的先进数字信号处理
- 批准号:
1423407 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
SaTC: STARSS: Design of Secure and Anti-Counterfeit Integrated Circuits
SaTC:STARSS:安全防伪集成电路设计
- 批准号:
1441639 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
SHF: Small: Digital Signal Processing using Stochastic Computing
SHF:小型:使用随机计算的数字信号处理
- 批准号:
1319107 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
SHF: Small :Digital Signal Processing with Biomolecular Reactions
SHF:小型:生物分子反应的数字信号处理
- 批准号:
1117168 - 财政年份:2011
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER: Synthesizing Signal Processing Functions with Biochemical Reactions
EAGER:利用生化反应综合信号处理功能
- 批准号:
0946601 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: CPA-DA: Noise-Aware VLSI Signal Processing: A New Paradigm for Signal Processing Integrated Circuit Design in Nanoscale Era
合作研究:CPA-DA:噪声感知VLSI信号处理:纳米时代信号处理集成电路设计的新范式
- 批准号:
0811456 - 财政年份:2008
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Design of High-Speed DSPTransceivers for Ethernet over Copper
铜缆以太网高速 DSP 收发器的设计
- 批准号:
0429979 - 财政年份:2004
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似国自然基金
骨髓微环境中正常造血干/祖细胞新亚群IL7Rα(-)LSK(low)细胞延缓急性髓系白血病进程的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
- 批准号:82270883
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
- 批准号:82271095
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
- 批准号:82270588
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
- 批准号:82002807
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
- 批准号:82003061
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
- 批准号:81873863
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
SBIR Phase I: Low Cost Metal Chelate Flow Battery for Long Duration Energy Storage
SBIR 第一阶段:用于长期储能的低成本金属螯合液流电池
- 批准号:
2321989 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Integration of low-carbon hydrogen value chains for hard-to-decarbonise sectors with wider energy systems: Whole-systems modelling and optimisation
将难以脱碳行业的低碳氢价值链与更广泛的能源系统整合:全系统建模和优化
- 批准号:
EP/W033275/1 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Research Grant
CAREER: Multi-isotopologue absorption spectroscopy for hydrogen-carrier and nitrogen-based low-carbon energy
职业:氢载体和氮基低碳能源的多同位素吸收光谱
- 批准号:
2339502 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
- 批准号:
2340095 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
- 批准号:
EP/Y003276/1 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Research Grant
S-TGG: A novel Tidal Gravity Generator for renewable, shoreside energy in ports and harbours with high efficiency and low environmental impact
S-TGG:一种新型潮汐重力发生器,用于港口和港口的可再生岸边能源,效率高,环境影响低
- 批准号:
10092293 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Collaborative R&D
FuSe: Ultra-Low-Energy Logic-in-Memory Computing using Multiferroic Spintronics
FuSe:使用多铁自旋电子学的超低能耗内存逻辑计算
- 批准号:
2329111 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Observation of pattern formation in low-energy electron diffraction (LEED) under single electron incidence conditions
单电子入射条件下低能电子衍射 (LEED) 图案形成的观察
- 批准号:
23K11711 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cooperative Virtual Synchronous Machine Control of Multiple Inverters Using Low-Speed Communication to Achieve Large-Scale Installation of Renewable Energy
利用低速通信的多台逆变器协同虚拟同步机控制实现可再生能源大规模安装
- 批准号:
23H01395 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




