Multidimensional Network Analysis for Analyzing and Predicting Complex Customer-Product Relations in Engineering Design
用于分析和预测工程设计中复杂的客户-产品关系的多维网络分析
基本信息
- 批准号:1436658
- 负责人:
- 金额:$ 50.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding customer preferences and needs is critically important in developing successful products. This award supports an interdisciplinary research to develop a data-driven mathematical approach for analyzing and predicting consumer preferences in design of sustainable engineering products, such as alternative fuel vehicles and smart appliances. The relations among customers and products are conceptualized as a complex network and analyzed using network theory and techniques. This study will help industry produce more competitive products in shorter time to market. The findings will contribute to the development of new techniques for analyzing large complex networks. Workshop and panel sessions on analyzing customers and products as networks will be organized for dissemination to a broader community. Research will be integrated with education through interdisciplinary undergraduate Design Certificate and graduate Design Cluster programs. Analytical modeling of customer preferences in product design is inherently difficult as it faces challenges in modeling heterogeneous human behavior and product offerings. The novelty of the research lies in the employment of a Multidimensional Customer-Product Network (MCPN) framework, where separate networks of "customers" and "products" are simultaneously modeled, and multiple types of relations, such as consideration and purchase, product associations, and customer social networks are considered. The research will extend the Exponential Random Graph Model (ERGM) as a unified statistical inference framework for analyzing multidimensional customer-product relations and predicting unknown customer preferences (consideration or choice) under new design scenarios. Social influences on adopting "green" technology are analyzed in the same framework. Our approach overcomes the limitations of the traditional statistical analysis and utility-based preference modeling by considering the dependency among product choices and the social influence induced "irrationality" of customer behavior. We will also explore the use of text analysis of customer-generated data in social media thereby creating crowdsourced "virtual labs" for advancing data analytics and computational social science in product design.
了解客户的偏好和需求对于开发成功的产品至关重要。该奖项支持跨学科研究,以开发数据驱动的数学方法,用于分析和预测可持续工程产品设计中的消费者偏好,例如替代燃料汽车和智能家电。 将顾客与产品之间的关系概念化为一个复杂网络,并运用网络理论和技术进行分析。这项研究将有助于工业界在更短的时间内生产出更具竞争力的产品。研究结果将有助于开发分析大型复杂网络的新技术。 将组织关于分析作为网络的客户和产品的讲习班和小组会议,以便向更广泛的社区传播。 研究将通过跨学科的本科设计证书和研究生设计集群计划与教育相结合。产品设计中的客户偏好分析建模本质上是困难的,因为它面临着建模异构人类行为和产品供应的挑战。研究的新奇在于采用了多维客户-产品网络(MCPN)框架,在该框架中,“客户”和“产品”的单独网络同时建模,并考虑了多种类型的关系,如考虑和购买,产品关联和客户社交网络。该研究将扩展指数随机图模型(ERGM)作为一个统一的统计推理框架,分析多维客户-产品关系,并预测未知的客户偏好(考虑或选择)下的新的设计方案。在同一框架下分析了采用“绿色”技术的社会影响。该方法通过考虑产品选择之间的依赖性和社会影响导致的顾客行为“非理性”,克服了传统统计分析和基于效用偏好建模的局限性。 我们还将探索在社交媒体中使用客户生成数据的文本分析,从而创建众包“虚拟实验室”,以推进产品设计中的数据分析和计算社会科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities
掺铌层状 FeNi 磷化物纳米片可在高电流密度下实现高效的整体水分解
- DOI:
10.1039/d1ta00372k - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Shuting Wen;Guangliang Chen;Wei Chen;Xianhui Zhang - 通讯作者:
Xianhui Zhang
Research on the Complexity of Information System Development
信息系统开发复杂性研究
- DOI:
10.2991/meici-15.2015.208 - 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
Wei Chen;Yan Zhang - 通讯作者:
Yan Zhang
A real-time multi-constraints obstacle avoidance method based on LiDAR
一种基于LiDAR的实时多约束避障方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Chen;Jian Sun;Weishuo Li;Dapeng Zhao - 通讯作者:
Dapeng Zhao
Anionic Ln–MOF with tunable emission for heavy metal ion capture and l-cysteine sensing in serum
具有可调谐发射功能的阴离子 Ln−MOF,用于血清中的重金属离子捕获和 L-半胱氨酸传感
- DOI:
10.1039/c9ta13932j - 发表时间:
2020-03 - 期刊:
- 影响因子:11.9
- 作者:
Tiancheng Sun;Ruiqing Fan;Rui Xiao;Tingfeng Xing;Mingyue Qin;Yaqi Liu;Sue Hao;Wei Chen;Yulin Yang - 通讯作者:
Yulin Yang
Ingenious introduction of aminopropylimidazole to tune the hydrophobic selectivity of dodecyl-bonded stationary phase for environmental organic pollutants
巧妙引入氨基丙基咪唑来调节十二烷基键合固定相对环境有机污染物的疏水选择性
- DOI:
10.1016/j.microc.2022.107933 - 发表时间:
2022-09 - 期刊:
- 影响因子:4.8
- 作者:
Yan Wu;Panpan Cao;Yanhao Jiang;Yanjuan Liu;Yuefei Zhang;Wei Chen;Zhengwu Bai;Sheng Tang - 通讯作者:
Sheng Tang
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 50.14万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
- 批准号:
2334385 - 财政年份:2023
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
- 批准号:
2227641 - 财政年份:2023
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2404816 - 财政年份:2023
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
- 批准号:
2219489 - 财政年份:2022
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
- 批准号:
2005661 - 财政年份:2020
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
1945380 - 财政年份:2020
- 资助金额:
$ 50.14万 - 项目类别:
Continuing Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940114 - 财政年份:2019
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
- 批准号:
1835782 - 财政年份:2018
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
RUI: Poly (vinyl alcohol) Thin Film Dewetting by Controlled Directional Drying
RUI:通过受控定向干燥进行聚(乙烯醇)薄膜去湿
- 批准号:
1807186 - 财政年份:2018
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
相似国自然基金
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
- 批准号:91418205
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
- 批准号:60673142
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 50.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the Role of International Higher Education in Japan-UK Relations: An Analysis of the RENKEI University Network Partnership
调查国际高等教育在日英关系中的作用:仁庆大学网络伙伴关系分析
- 批准号:
24K16704 - 财政年份:2024
- 资助金额:
$ 50.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 50.14万 - 项目类别:
Research Grant
REU Site: Graph Learning and Network Analysis: from Foundations to Applications (GraLNA)
REU 网站:图学习和网络分析:从基础到应用 (GraLNA)
- 批准号:
2349369 - 财政年份:2024
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
Cryptosporidium Artificial Intelligence Network Analysis of Drug Action (CANADA)
隐孢子虫药物作用人工智能网络分析(加拿大)
- 批准号:
EP/Z532885/1 - 财政年份:2024
- 资助金额:
$ 50.14万 - 项目类别:
Research Grant
Comparisons of Interventions and their Components for Preventing Falls in Older Adults: A living systematic review and component network meta-analysis
预防老年人跌倒的干预措施及其组成部分的比较:实时系统评价和组成网络荟萃分析
- 批准号:
489341 - 财政年份:2023
- 资助金额:
$ 50.14万 - 项目类别:
Operating Grants
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 50.14万 - 项目类别:
Continuing Grant
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
- 批准号:
2244805 - 财政年份:2023
- 资助金额:
$ 50.14万 - 项目类别:
Standard Grant
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
- 批准号:
10819019 - 财政年份:2023
- 资助金额:
$ 50.14万 - 项目类别:














{{item.name}}会员




