EAGER: Ferroelectric Memristive Devices Emulating Synapses in Subcortical Information Processors

EAGER:铁电忆阻器件模拟皮层下信息处理器中的突触

基本信息

  • 批准号:
    1445386
  • 负责人:
  • 金额:
    $ 15.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Neuromorphic computing is an interdisciplinary field that aspires to create physical architecture and design principles based on biological nervous systems for applications in vision systems, auditory systems and autonomous robots. There is an increasing interest in developing electronic analog circuits to mimic neuro-biological architectures present in the nervous system. In the nervous system of the brain, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another cell. This exploratory research proposes to create a two-terminal memristive device that can emulate the function of a synapse. The resistance of the device will change depending on the amount, direction, and duration of voltage applied. The device has advantage of maintaining its state until another voltage pulse is applied over conventional computer memory, which requires regular charge to maintain its state. The principle behind the proposed approach is to make dipoles in a film switch up or down depending on voltage polarity in ferroelectric materials. If the thickness of the ferroelectric layer is made small enough, it can allow tunneling of electrons that is a function of the relative density of dipoles in up or down position thus preserving a memory similar to that of the synapse, thereby making electronic analog circuits to mimic brain. The proposed novel synapse circuits will enable integration of complex systems with power-constrained devices. The research on hafnium oxide (HfO2) based FTJ will also open the door for further scaling of FE capacitor based random access memory and enable the fabrication of FE field effect transistor (FE-FET) based memory. The graduate students would have a significant opportunity in advancing their interdisciplinary skills in semiconductors device design and fabrication, integrated circuit design, machine learning, and neuroscience. This proposal explores a two-terminal memristive device based on newly discovered ferroelectricity in CMOS compatible high permittivity dielectric, HfO2 doped with silicon or aluminum. The switching mechanism in FTJ is driven by polarization that is relatively immune from stochastic variations observed in other resistive memory devices. Fabrication of a high permittivity HfO2 based ferroelectric device will allow thinner films which can be scaled. The goal of the proposed research is to explore the design and fabrication of HfO2 based ferroelectric tunnel junction (FTJ) memristive device and its characterization to generate models. In addition, neuron circuits with multiple signaling types for behavioral emulation of biological neurons will be designed, synaptic circuits based on the proposed memristor device models will be trained, and the feasibility of incorporating the neuron and synapse circuits into subcortex-inspired information processing (SIIP) system will be evaluated. The outcome of the proposed exploratory research will result in a novel device that can mimic synaptic behavior and can be integrated with conventional CMOS electronics thereby forming the basis for the next generation of intelligent computing.
神经形态计算是一个跨学科的领域,它致力于创建基于生物神经系统的物理架构和设计原则,用于视觉系统、听觉系统和自主机器人。人们对开发电子模拟电路来模拟神经系统中存在的神经生物结构越来越感兴趣。在大脑的神经系统中,突触是一种允许神经元将电信号或化学信号传递给另一细胞的结构。这项探索性研究建议创造一种两端记忆装置,可以模仿突触的功能。该装置的电阻将根据施加的电压的大小、方向和持续时间而变化。该设备具有保持其状态的优点,直到在传统的计算机存储器上施加另一电压脉冲为止,这需要规则的充电来维持其状态。该方法的原理是使薄膜中的偶极子根据铁电材料中的电压极性进行上下切换。如果铁电层的厚度足够小,它可以允许电子隧穿,这是上下位置偶极子相对密度的函数,从而保留了类似突触的记忆,从而使电子模拟电路模仿大脑。拟议的新型突触电路将使复杂系统与功率受限的设备集成在一起。基于HfO2的FTJ的研究也将为基于FE电容的随机存取存储器的进一步扩展打开大门,并使基于FE-FET的存储器的制造成为可能。这些研究生将有一个重要的机会提高他们在半导体器件设计和制造、集成电路设计、机器学习和神经科学方面的跨学科技能。这一方案探索了一种基于新发现的铁电性的双端记忆器件,这种铁电性是在掺硅或铝的高介电常数介质HfO2中发现的。FTJ中的开关机制是由极化驱动的,极化相对不受其他阻性存储设备中观察到的随机变化的影响。高介电常数HfO2铁电器件的制备将使薄膜变得更薄,而且可以按比例调整。本研究的目标是探索基于HfO2的铁电隧道结(FTJ)记忆器件的设计和制造,并对其进行表征以生成模型。此外,还将设计用于生物神经元行为仿真的具有多种信号类型的神经元电路,将训练基于所提出的忆阻器器件模型的突触电路,并将评估将神经元和突触电路纳入皮层下启发信息处理(SIIP)系统的可行性。拟议中的探索性研究的结果将导致一种新的设备,它可以模拟突触行为,并可以与传统的cmos电子设备集成,从而为下一代智能计算奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Santosh Kurinec其他文献

The positioning of biofuel cells-based biobatteries for net-zero energy future
基于生物燃料细胞的生物电池在实现净零能源未来中的定位
  • DOI:
    10.1016/j.est.2023.107919
  • 发表时间:
    2023-11-20
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Santanu Patra;Jaya Verma;Yogendra K. Mishra;Santosh Kurinec;Qingyuan Wang;Mikael Syväjärvi;Ashutosh Tiwari
  • 通讯作者:
    Ashutosh Tiwari
Analyzing residual stress in bilayer chalcogenide Ge<sub>2</sub>Se<sub>3</sub>/SnTe films
  • DOI:
    10.1016/j.tsf.2009.04.017
  • 发表时间:
    2009-10-30
  • 期刊:
  • 影响因子:
  • 作者:
    Archana Devasia;Feiming Bai;Morgan Davis;Kristy A. Campbell;Surendra Gupta;Santosh Kurinec
  • 通讯作者:
    Santosh Kurinec
Introducing gallium in silicon and thin film polysilicon using self assembled monolayer doping
利用自组装单层掺杂将镓引入硅和薄膜多晶硅中
  • DOI:
    10.1016/j.matlet.2022.132839
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Carolyn Spaulding;Alex Taylor;Scott Williams;Glenn Packard;Gabriel Curvacho;Santosh Kurinec
  • 通讯作者:
    Santosh Kurinec

Santosh Kurinec的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Santosh Kurinec', 18)}}的其他基金

Planning Grant: Engineering Research Center for Micro Ferroelectronics for Devices and Systems: microFeDS
规划资助:微铁电子器件与系统工程研究中心:microFeDS
  • 批准号:
    2123863
  • 财政年份:
    2021
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
EAGER: Self Assembled Monolayer Doping for Advanced 3D Nano & Flexible Semiconductor Structures
EAGER:用于先进 3D 纳米的自组装单层掺杂
  • 批准号:
    1842635
  • 财政年份:
    2018
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
SKAUST-NSF Research Conference on Electronic Materials, Devices and Systems for a Sustainable Future March 2016 Thuwal, Saudi Arabia
SKAUST-NSF 可持续未来电子材料、设备和系统研究会议 2016 年 3 月 沙特阿拉伯图瓦尔
  • 批准号:
    1560843
  • 财政年份:
    2016
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Semiconductor Technology 2020. The Workshop will be held in Rochester NY on May 14-16, 2007.
2020 年半导体技术。研讨会将于 2007 年 5 月 14 日至 16 日在纽约罗切斯特举行。
  • 批准号:
    0733611
  • 财政年份:
    2007
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Leading Microelectronic Engineering Education to New Horizons
引领微电子工程教育新视野
  • 批准号:
    0530575
  • 财政年份:
    2005
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Integration of Magnetic Tunnel Junctions with Quantum Negative Differential Resistance Devices
磁隧道结与量子负微分电阻器件的集成
  • 批准号:
    0501460
  • 财政年份:
    2005
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Continuing Grant
Undergraduate Co-op Based Concentration Curriculum in MEMs and Nanotechnology
基于合作社的本科 MEM 和纳米技术专业课程
  • 批准号:
    0342703
  • 财政年份:
    2003
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
GOALI: High Permeability Ferrite Cores for Micro-Inductors
GOALI:用于微电感器的高磁导率铁氧体磁芯
  • 批准号:
    0219379
  • 财政年份:
    2002
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Synthesis of Oxide Ferroelectric Rashba Semiconductors for Low Power Computing
RII Track-4:NSF:用于低功耗计算的氧化物铁电 Rashba 半导体的合成
  • 批准号:
    2327352
  • 财政年份:
    2024
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Plasmon-Enhanced FerroElectric Discovery
等离激元增强铁电的发现
  • 批准号:
    EP/X034593/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Research Grant
Programmable Ferroelectric Nanoelectronics for In-memory Computing
用于内存计算的可编程铁电纳米电子学
  • 批准号:
    DP240102137
  • 财政年份:
    2024
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Discovery Projects
Infrared photonics using ferroelectric scandium-aluminum nitride semiconductors
使用铁电钪铝氮化物半导体的红外光子学
  • 批准号:
    2414283
  • 财政年份:
    2024
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2346484
  • 财政年份:
    2023
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Mechanism of Cooling Performance of Ferroelectric Thin Films by Direct Measurement of Thermophysical Properties
通过直接测量热物理性质研究铁电薄膜的冷却性能机制
  • 批准号:
    23K13668
  • 财政年份:
    2023
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2149480
  • 财政年份:
    2023
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Accurate Atomic Structure and Symmetry Determination of New Hybrid Improper Ferroelectric Phases
新型杂化非合适铁电相的准确原子结构和对称性测定
  • 批准号:
    2313456
  • 财政年份:
    2023
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了